Loading...
Search for: steady-incompressible-flow
0.005 seconds

    MHD flow in a channel using new combination of order of magnitude technique and HPM [MHD tok u kanalu uporabom novih kombinacija tehnika grubog opisa vrijednosti i HPM]

    , Article Tehnicki Vjesnik ; Volume 21, Issue 2 , April , 2014 , Pages 317-321 ; ISSN: 13303651 Abbasi, M ; Ganji, D. D ; Rahni, M. T ; Sharif University of Technology
    Abstract
    The present work is concerned with the steady incompressible flow through a parallel plate channel with stretching walls under an externally applied magnetic field. The governing continuity and Navier-Stokes equations are reduced to a fourth order nonlinear differential equation by using vorticity definition and similarity solution transformation. The obtained equations are solved by applying the analytical homotopy perturbation method (HPM). The method is called order of magnitude suggested for simplifying series solution to finite expression that is useful in engineering problems. The results are verified by comparing with numerical solutions and demonstrate a good accuracy of the obtained... 

    A high-order accurate implicit operator scheme for solving steady incompressible viscous flows using artificial compressibility method

    , Article Computational Fluid Dynamics 2008 ; 2009 , Pages 141-145 Hejranfar, K ; Khajeh Saeed, A ; Sharif University of Technology
    Springer berlin  2009
    Abstract
    This paper uses a fourth-order compact implicit operator scheme for solving 2D/3D steady incompressible flows using the artificial compressibility method. To stabilize the numerical solution, numerical dissipation terms and/or filters are used. Results obtained for test cases are in good agreement with the available numerical and experimental results. A sensitivity study is also conducted to evaluate the effects of grid resolution and pseudocompressibility parameter on accuracy and convergence rate of the solution. The effects of filtering and numerical dissipation on the solution are also investigated  

    Development of Compact Finite-Difference Lattice Boltzmann Method for Solving Two-Phase Flows

    , Ph.D. Dissertation Sharif University of Technology Ezzatneshan, Eslam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present thesis, a high-order compact finite-difference lattice Boltzmann method (CFDLBM) is proposed and applied for an accurate and efficient numerical simulation of liquid-vapor two-phase flows. At first, the stability of the fourth-order CFDLBM is performed by using the von Neumann stability analysis for the D2Q7 and D2Q9 lattices. The stability analysis indicates that the CFDLBM proposed is stable and thus suitable for the simulation of high Reynolds number flows. The high-order CFDLBM is then developed and applied to accurately compute 2-D and 3-D incompressible flows in the Cartesian coordinates. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized...