Loading...
Search for: steady-state-and-transients
0.007 seconds

    Sensitivity analysis of steering system parameters for a passenger car by DOE method

    , Article 2005 SAE World Congress, Detroit, MI, 11 April 2005 through 14 April 2005 ; 2005 ; 01487191 (ISSN) Azadi, S ; Mirzadeh, O ; Sharif University of Technology
    SAE International  2005
    Abstract
    In this research, important parameters of a rack and pinion steering system in dynamic steady state and transient responses have been investigated. For this purpose, virtual model of a medium passenger car in ADAMS/Car has been used. The model has up to 121 kinematic degree of freedom and includes all components of the rack and pinion steering system. Several different experimental test results have confirmed the validity of the model. Sensitivity analysis have been done based on design of experiments (DOE) method. Two level fractional factorial designs have been selected for this purpose. Steady state cornering and step steer input are the analysis that used for this research. Understeering... 

    An investigation on the body force modeling in a lattice Boltzmann BGK simulation of generalized Newtonian fluids

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 415, issue , 2014 , pp. 315-332 Farnoush, S ; Manzari, M. T ; Sharif University of Technology
    Abstract
    Body force modeling is studied in the Generalized Newtonian (GN) fluid flow simulation using a single relaxation time lattice Boltzmann (LB) method. First, in a shear thickening Poiseuille flow, the necessity for studying body force modeling in the LB method is explained. Then, a parametric unified framework is constructed for the first time which is composed of a parametric LB model and its associated macroscopic dual equations in both steady state and transient simulations. This unified framework is used to compare the macroscopic behavior of different forcing models. Besides, using this unified framework, a new forcing model for steady state simulations is devised. Finally, by solving a... 

    A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus MV microgrid

    , Article Canadian Journal of Electrical and Computer Engineering ; Volume 36, Issue 1 , 2013 , Pages 18-25 ; 08408688 (ISSN) Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a decentralized self-adjusting reactive power controller for the autonomous operation of a multi-bus medium voltage (MV) microgrid. The main objective of the proposed control strategy of each distributed generation (DG) unit is to compensate the reactive power of its local loads and to share the reactive power of the nonlocal loads among itself and other DG units. The proposed control strategy includes an improved droop controller whose parameters are adjusted according to the reactive power of the local loads. A virtual inductive impedance loop is augmented to the voltage controller to enhance the steady state and transient responses of the proposed reactive power... 

    Performance improvement of steady-state and transient operation of offshore wind farm HVDC power transmission

    , Article 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics, COMPEL 2015, 12 July 2015 through 15 July 2015 ; July , 2015 , Page(s): 1 - 7 ; 9781467368476 (ISBN) Safaeian, R ; Ebrahimi, S ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Wind power generation is increasing fast as a clean renewable energy resource. Offshore wind farms are popular due to advantages such as higher and smoother wind speeds, less farm site limitations, etc. High capacitive currents and need to expensive compensations, make use of high-voltage-direct-current (HVDC) power transmission indispensable for longdistance wind farm power generations. Steady-state and transient performance improvements of HVDC systems have always been an interesting industrial and academic research area. In this paper, a novel control method is proposed to improve the steady-state operation of HVDC system. Moreover, a new fault detection scheme is proposed to improve the... 

    Development and qualification of a thermal-hydraulic nodalization for modeling station blackout accident in PSB-VVER test facility

    , Article Nuclear Engineering and Design ; Volume 303 , 2016 , Pages 109-121 ; 00295493 (ISSN) Saghafi, M ; Ghofrani, M. B ; D'Auria, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This paper deals with the development of a qualified thermal-hydraulic nodalization for modeling Station Black-Out (SBO) accident in PSB-VVER Integral Test Facility (ITF). This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. In this regard, a nodalization has been developed for thermal-hydraulic modeling of the PSB-VVER ITF by MELCOR integrated code. The nodalization is qualitatively and quantitatively qualified at both steady-state and transient levels. The accuracy of the MELCOR predictions is quantified in the transient level using the Fast Fourier Transform Base Method... 

    Optimal reactive power planning in active distribution systems for steady-state and transient characteristics improvement

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 503-508 ; 9781728115085 (ISBN) Akbari, B ; Mirnezhad, H ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Numerous operational issues including voltage deviation and instability arise in distribution networks with insufficient reactive support. Static issues have been widely studied for years, and some dynamic ones are recently gaining attention due to the proliferation of distributed generation (DG). In this paper, a two-step reactive compensation planning procedure is proposed to address these challenges. In the first step, passive compensators are optimally sited and sized using a metaheuristic algorithm in order to improve steady-state indices including power efficiency, voltage profile, and static voltage stability. In the second step, a static synchronous compensator (Statcom) is located... 

    On model predictive control of quasi-resonant converters

    , Article Journal of Circuits, Systems and Computers ; Volume 18, Issue 7 , 2009 , Pages 1167-1183 ; 02181266 (ISSN) Tahami, F ; Ebad, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, different model predictive control synthesis frameworks are examined for DCDC quasi-resonant converters in order to achieve stability and desired performance. The performances of model predictive control strategies which make use of different forms of linearized models are compared. These linear models are ranging from a simple fixed model, linearized about a reference steady state to a weighted sum of different local models called multi model predictive control. A more complicated choice is represented by the extended dynamic matrix control in which the control input is determined based on the local linear model approximation of the system that is updated during each sampling...