Loading...
Search for: steady-state-errors
0.011 seconds

    CDM-based closed-loop transfer function design for ramp input

    , Article Transactions of the Institute of Measurement and Control ; Volume 33, Issue 5 , 2011 , Pages 558-572 ; 01423312 (ISSN) Haeri, M ; Tavazoei, M. S ; Sharif University of Technology
    2011
    Abstract
    This paper presents a method to determine the denominator and numerator polynomials of a closed-loop transfer function in order to obtain desired transient and steady-state responses in terms of the overshoot, speed (time needed for the relative error to become less than a specific amount) and the steady-state error when the desired output is a ramp signal. Meanwhile, a controller is designed with the same characteristic equation for the closed-loop system to eliminate step and ramp disturbances  

    Notes on integral performance indices in fractional-order control systems

    , Article Journal of Process Control ; Volume 20, Issue 3 , 2010 , Pages 285-291 ; 09591524 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    2010
    Abstract
    Integral performance indices as quantitative measures of the performance of a system are commonly used to evaluate the performance of designed control systems. In this paper, it is pointed out that due to existence of non-exponential modes in the step response of a fractional-order control system having zero steady state error, integral performance indices of such a system may be infinite. According to this point, some simple conditions are derived to guarantee the finiteness of different integral performance indices in a class of fractional-order control systems. Finally, some numerical examples are presented to show the applicability of the analytical achievements of the paper  

    Compensation of transient error in sensorless alternating carrier injection scheme

    , Article IECON Proceedings (Industrial Electronics Conference) ; 2012 , Pages 1702-1706 ; 9781467324212 (ISBN) Ghazimoghadam, M. A ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    High frequency (HF) carrier injection schemes can estimate rotor position in a wide speed range. In these methods, first a HF voltage is injected to stator windings and then the corresponding HF current is exploited to estimate the position of rotor using a closed loop tracking observer. The tracking observer is capable to track rotor saliency with no steady state error. However when the motor starts to move or whenever the rotor speed changes a transient error appears. In this paper a new solution is proposed to compensate the transient error in estimation of rotor position  

    Transient error compensation in sensorless control of PMSM

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 38-43 ; 9781467301114 (ISBN) Ghazimoghadam, M. A ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    Sensorless schemes based on HF carrier injection are capable of estimating rotor position in a wide speed range. In these schemes first an additional HF voltage is injected to stator windings. The corresponding HF current is decoupled from main stator currents and the position of the rotor saliency is estimated based on the decoupled HF current in a closed loop tracking observer. The tracking observer is capable of tracking rotor saliency with no steady state error. Transient error appears when the motor starts to move or whenever the rotor speed changes because of any disturbance or any change in the rotor speed command. In this paper a new solution is proposed in order to compensate for... 

    Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model

    , Article Mechatronics ; Volume 22, Issue 7 , 2012 , Pages 945-957 ; 09574158 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    Hysteresis and significant nonlinearities in the behavior of Shape Memory Alloy (SMA) actuators encumber effective utilization of these actuator. Due to these effects, the position control of SMA actuators has been a great challenge in recent years. Literature review of the research conducted in this area shows that using the inverse of the phenomenological hysteresis models can compensate the hysteresis of these actuators effectively. But, inverting some of these models, such as Preisach model, is numerically a complex task. However, the generalized Prandtl-Ishlinskii model is analytically invertible, and therefore can be implemented conveniently as a feedforward controller for compensating...