Loading...
Search for: steel-jacket-platforms
0.007 seconds

    Passive devices for wave induced vibration control in offshore steel jacket platforms

    , Article Scientia Iranica ; Volume 16, Issue 6 A , 2009 , Pages 443-456 ; 10263098 (ISSN) Golafshani, A. A ; Gholizad, A ; Sharif University of Technology
    2009
    Abstract
    Performances of tuned mass dampers and friction dampers to mitigate the wave induced vibrations in jacket type offshore platforms have been compared in this study. Due to the random nature of ocean waves, a full stochastic analysis method has been used to evaluate the response of the structures equipped with these devices. A stochastic linearization technique has been used to take the nonlinear behavior of friction dampers into account. The developed mathematical formulation has been applied to evaluate the response of realistic models, and to find out the optimal values for the adjustable parameters of friction dampers. The results have been verified in comparison with time domain nonlinear... 

    Feasibility and Efficiency of Vibration Control Algorithms on Offshore Platforms

    , Ph.D. Dissertation Sharif University of Technology Gholizadeh, Amin (Author) ; Golafshani, Ali Akbar (Supervisor)
    Abstract
    Offshore platforms are of the economic life lines of oil rich countries. These infrastructures are located at severe environmental conditions, their construction and installation involves expense and these justify utilization of these structures with novel auxiliary vibration control device. Two passive vibration control systems have been evaluated in this study aiming to fatigue damage mitigation in offshore steel jacket platforms. Performances of tuned mass damper and friction damper to suppression of wave induced vibrations in fixed offshore platforms have been investigated in this study. Due to the random nature of ocean waves, a fully stochastic analysis method has been used to evaluate... 

    Performance-based assessment of steel jacket platforms by wave endurance time method

    , Article Ships and Offshore Structures ; Oct , 2015 , Page 1-11 ; 17445302 (ISSN) Jahanmard, V ; Diznab, M. A. D ; Mehdigholi, H ; Tabeshpour, M. R ; Seif, M. S ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    In this article, wave endurance time (WET) is addressed as an applicable method for performance-based assessment of fixed offshore structures under extreme waves. In this method, inspired by the endurance time method in the field of earthquake engineering, artificial wave records called wave functions are designed so that their excitations gradually increase with time. Therefore, the main advantage of the proposed method is that it can assess the structural performance under various wave load conditions through a single time-history analysis. Moreover, the reliability of structures can be evaluated on the basis of the time that the structural response is still acceptable. In this study,... 

    Performance-based assessment of steel jacket platforms by wave endurance time method

    , Article Ships and Offshore Structures ; Volume 12, Issue 1 , 2017 , Pages 32-42 ; 17445302 (ISSN) Jahanmard, VR ; Dastan Diznab, M. A ; Mehdigholi, H ; Tabeshpour, M. R ; Seif, M. S ; Sharif University of Technology
    Abstract
    In this article, wave endurance time (WET) is addressed as an applicable method for performance-based assessment of fixed offshore structures under extreme waves. In this method, inspired by the endurance time method in the field of earthquake engineering, artificial wave records called wave functions are designed so that their excitations gradually increase with time. Therefore, the main advantage of the proposed method is that it can assess the structural performance under various wave load conditions through a single time-history analysis. Moreover, the reliability of structures can be evaluated on the basis of the time that the structural response is still acceptable. In this study,... 

    Seismic Behavior Comparison of RC Shear Walls Strengthened Using FRP Composites, Steel Elements, and Concrete Jacket

    , M.Sc. Thesis Sharif University of Technology Habibi, Omid (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    This paper aims at investigating the seismic behavior of strengthened reinforced concrete (RC) shear walls using a 3D finite element analysis. A series of four different configurations of carbon fiber reinforced polymer (CFRP) composites, four different schemes of steel elements and two different schemes of concrete jacket are utilized to compare the two methods of retrofitting RC shear walls with similar dimensions and reinforcement ratios. Nonlinear simulations of the RC shear walls are conducted under the action of lateral cyclic loading in ABAQUS Explicit software. In addition, the numerical modeling for RC walls strengthened by CFRP composites as well as steel elements are validated... 

    Endurance wave analysis (EWA) and its application for assessment of offshore structures under extreme waves

    , Article Applied Ocean Research ; Volume 37 , 2012 , Pages 98-110 ; 01411187 (ISSN) Zeinoddini, M ; Matin Nikoo, H ; Estekanchi, H ; Sharif University of Technology
    Abstract
    The aim of this paper is to introduce a novel approach, called Endurance Wave Analysis (EWA), for non-linear dynamic analysis and assessment of offshore structures subjected to irregular wave forces. This is, in fact, an extension of the Endurance Time Analysis (ETA) already presented by previous researchers for the seismic assessment of onshore structures. With the EWA method, the offshore structure is simulated under a predefined Intensifying Wave Train Function (IWTF), corresponding to a gradually deteriorating sea state at a specific site. The function is designed so that the roughness of the sea state represented by them increases over the time and even goes well beyond the design sea... 

    Retrofit of Ressalat jacket platform (Persian Gulf) using friction damper device

    , Article Journal of Zhejiang University: Science A ; Volume 12, Issue 9 , 2011 , Pages 680-691 ; 1673565X (ISSN) Komachi, Y ; Tabeshpour, M. R ; Golafshani, A. A ; Mualla, I ; Sharif University of Technology
    Abstract
    A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic... 

    Inverse vibration technique for structural health monitoring of offshore jacket platforms

    , Article Applied Ocean Research ; Volume 62 , 2017 , Pages 181-198 ; 01411187 (ISSN) Haeri, M. H ; Lotfi, A ; Dolatshahi, K. M ; Golafshani, A. A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper a new approach is introduced for structural health monitoring of offshore jacket platforms. The procedure uses the measured ambient vibration responses and the corresponding readable natural frequencies and mode shapes of the structural system. Since offshore platforms are composed of heavy topsides supported by jacket structures, participation of the first mode is dominant in each direction in the response of the structure under field excitations. Moreover, ambient vibrations such as wave loads and boat impacts only excite the first modes of the structure. Therefore, it is difficult to find higher modes and the pertinent frequencies by use of accelerometers data. The... 

    Friction damper for vibration control in offshore steel jacket platforms

    , Article Journal of Constructional Steel Research ; Volume 65, Issue 1 , 2009 , Pages 180-187 ; 0143974X (ISSN) Golafshani, A. A ; Gholizad, A ; Sharif University of Technology
    2009
    Abstract
    The performance of friction dampers to mitigate the wave-induced vibrations in jacket-type offshore platforms has been investigated in this study. Due to the random nature of ocean waves, a full stochastic analysis method has been used to evaluate the response of the structures equipped with these devices. A stochastic linearization technique has also been used to take the nonlinear behavior of these hysteretic dampers into account. At last, the developed mathematical formulation has been applied to evaluate the response of realistic models, and to find out the optimal values for the adjustable parameters of the friction dampers to dissipate the wave induced vibrations of the platforms. ©... 

    Friction damper for fatigue damage mitigation in steel jacket platforms

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 15 June 2008 through 20 June 2008, Berlin ; Volume 1 , 2008 , Pages 27-34 ; 9780791848234 (ISBN) Golafshani, A. A ; Gholizad, A ; Ocean, Offshore, and Arctic Engineering Division; ASME ; Sharif University of Technology
    2008
    Abstract
    The performance of friction dampers to mitigate the wave induced vibrations in jacket type offshore platforms has been investigated in this study. Due to the random nature of ocean waves, a full stochastic analysis method has been intended to evaluate the response of the structures utilized with these devices and also a stochastic linearization technique has been used to take the nonlinear behavior of these hysteretic dampers into account. At last, the developed mathematic formulation has been practiced to evaluate the response of a realistic model and to find out the optimal values for the adjustive parameters of the friction dampers to dissipate the wave induced vibrations of the platform.... 

    Tuned mass damper for vibration control in steel jacket platforms

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 15 June 2008 through 20 June 2008, Berlin ; Volume 1 , 2008 , Pages 35-42 ; 9780791848234 (ISBN) Golafshani, A. A ; Gholizad, A ; Ocean, Offshore, and Arctic Engineering Division; ASME ; Sharif University of Technology
    2008
    Abstract
    Considering the stress cycles in joints and members due to wave induced forces on offshore platforms, fatigue analysis is therefore one of the most important analyses in offshore platforms design. Most of steel jacket type platforms located in areas with relatively high ratios of operational sea-states to maximum design environmental events; fall in acceptable safety margin in inplace and seismic analyses. But in fatigue analyses they will face critical condition. Therefore it seems that utilizing control mechanisms with the aim of increasing fatigue life in such platforms will be more preferable to merely deck displacement control. Investigation of tuned mass dampers adjustable parameters... 

    Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 4 , 2012 , Pages 1179-1196 ; 1738494X (ISSN) Sarrafan, A ; Zareh, S. H ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feedforward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse...