Loading...
Search for: stem-cell-niche
0.004 seconds

    Microfluidic-based droplets for advanced regenerative medicine: current challenges and future trends

    , Article Biosensors ; Volume 12, Issue 1 , 2022 ; 20796374 (ISSN) Nazari, H ; Heirani Tabasi, A ; Ghorbani, S ; Eyni, H ; Razavi Bazaz, S ; Khayati, M ; Gheidari, F ; Moradpour, K ; Kehtari, M ; Ahmadi Tafti, S.M ; Ahmadi Tafti, S. H ; Warkiani, M. E ; Sharif University of Technology
    MDPI  2022
    Abstract
    Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue... 

    Controlling differentiation of stem cells for developing personalized organ-on-chip platforms

    , Article Advanced Healthcare Materials ; Volume 7, Issue 2 , 2018 ; 21922640 (ISSN) Geraili, A ; Jafari, P ; Sheikh Hassani, M ; Heidary Araghi, B ; Mohammadi, M. H ; Ghafari, A. M ; Hassanpour Tamrin, S ; Pezeshgi Modarres, H ; Rezaei Kolahchi, A ; Ahadian, S ; Sanati Nezhad, A ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood–brain barrier, bone marrow, heart,...