Loading...
Search for: stick-slip
0.004 seconds
Total 21 records

    Chaos study of a vibratory micro-robot in hybrid motion

    , Article Nonlinear Dynamics ; Volume 82, Issue 3 , November , 2015 , Pages 1355-1378 ; 0924090X (ISSN) Jalili, H ; Salarieh, H ; Vossoughi, G ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    In this paper, motion of a micro-robot with two perpendicular vibrational actuators is studied. In this work, separation of the micro-robot body from the substrate of motion is modeled. If the applied vertical force to the micro-robot body is greater than its weight, body of the micro-robot jumps apart from the substrate and then returns to it. This motion will continue intermittently until it is damped. In this condition, the motion mechanism of “stick-slip” is not valid, and a hybrid motion according to “stick-slip-jump” mode is governed. By increasing the applied vertical force, the motion velocity of the micro-robot becomes disordered and unrepeatable. By numerical solving of the... 

    On the contact mechanics of a rolling cylinder on a graded coating. Part 1: Analytical formulation

    , Article Mechanics of Materials ; Vol. 68, issue , 2014 , p. 207-216 Alinia, Y ; Guler, M. A ; Adibnazari, S ; Sharif University of Technology
    Abstract
    In this paper, the fully coupled rolling contact problem of a graded coating/substrate system under the action of a rigid cylinder is investigated. Using the singular integral equation approach, the governing equations of the rolling contact problem are constructed for all possible stick/slip regimes. Applying the Gauss-Chebyshev numerical integration method, the governing equations are converted to systems of algebraic equations. A new numerical algorithm is proposed to solve these systems of equations. Both the coupled and the uncoupled solutions to the problem are found through an implemented iterative procedure. In Part I of this paper, the analytical formulation of the rolling contact... 

    Motion analysis of a vibrational microrobot with two perpendicular harmonic actuators and deriving the design parameters in stick-slip mode

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 11, Issue 2 , 2016 ; 15551415 (ISSN) Jalili, H ; Vossoughi, G ; Salarieh, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    In this paper, the stick-slip motion of a microrobot with two perpendicular vibrational actuators is studied. This motion is based on the friction drive principle. To determine the effective parameters in the motion of microrobot, the equations of motion of the microrobot are derived. To simplify the equations for determining the design parameters, the vibrational actuators are modeled with two perpendicular harmonic forces. To study the motion dynamics of the microrobot, its equation of motion is derived in a nondimensional expression by defining the nondimensional effective parameters. The Fourier expansion (F.E.) method is used to analyze the numerical results and it showed some... 

    Study of a piezo-electric actuated vibratory micro-robot in stick-slip mode and investigating the design parameters

    , Article Nonlinear Dynamics ; Volume 89, Issue 3 , 2017 , Pages 1927-1948 ; 0924090X (ISSN) Jalili, H ; Salarieh, H ; Vossoughi, G ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    In this paper, the stick-slip motion of a new type of micro-robot with two perpendicular vibratory actuators is studied which is based on the friction drive principle. The actuators are based on piezo-electric phenomenon which are driven by a harmonic voltage, and both of them are mounted on the micro-robot body. These actuators cause the micro-robot moves forward or backward due to the specified phase difference between the voltages applied to vertical and horizontal actuators. Since the dynamics of the actuators affects on the micro-robot motion, so to derive the equations of motion the coupled dynamics between the body of robot and vibratory masses of actuators are considered, and the... 

    Stick-slip behavior of sessile drop on the surfaces with irregular roughnesses

    , Article Chemical Engineering Research and Design ; Volume 160 , 2020 , Pages 216-223 Azadi Tabar, M ; Shayesteh, M ; Shafiei, Y ; Ghazanfari, M. H ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    In this work, sessile drop and low-bond axisymmetric drop shape analysis methods were coupled to provide some new aspects on stick-slip behavior as well as stick time of a drop on calcite surfaces. Slightly hydrophobic calcite surfaces typified with three irregular roughnesses were used to create irregular surfaces to mimic defects for the water-calcite-air systems. Polishing papers of 200, 600, and 1200 grit and a polishing machine were used to prepare surfaces. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared, and atomic force microscopy techniques were employed to evaluate the chemical and physical properties of surfaces. A model was developed to predict... 

    Vibration and dynamic analysis of oil well drillstring considering coupled axial and torsional effects using cylindrical superelement

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 14 , November , 2013 ; 9780791856437 (ISBN) Ahmadian, M. T ; Ghorbani, Sh ; Firoozbakhsh, K ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this paper axial and torsional vibrations of a drillstring are studied using cylindrical superelement. Drillstring vibration equation is derived by calculating kinetic and potential energy and work done by external forces on drillstring, and utilizing Hamilton's principle. The model is analyzed by implementing finite element technique with consideration drillstring weight, centrifugal force due to rotation of drillstring, axial force resulting from bit with the formation contact and torsional torque caused by the stick-slip phenomenon. To calculate the vibrational response of drillstring, a computational finite element scheme was developed. For a typical case of oil well drillstring, the... 

    Optimal sliding mode control for Atomic Force Microscope tip positioning during nano-manipulation process

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2285-2296 ; 10263098 (ISSN) Babahosseini, H ; Mahboobi, S. H ; Vakilzadeh, M. K ; Alasty, A ; Meghdari, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    This research presents two-dimensional controlled pushing-based nanomanipulation using an Atomic Force Microscope (AFM). A reliable control of the AFM tip position is crucial to AFM-based manipulation since the tip can jump over the target nanoparticle causing the process to fail. However, detailed modeling and an understanding of the interaction forces on the AFM tip have a central role in this process. In the proposed model, the Lund-Grenoble (LuGre) method is used to model the dynamic friction force between the nanoparticle and the substrate. This model leads to the stick-slip behavior of the nanoparticle, which is in agreement with the experimental behavior at nanoscale. Derjaguin... 

    Dynamic modeling of stick-slip motion in a legged, piezoelectric driven microrobot

    , Article International Journal of Advanced Robotic Systems ; Volume 7, Issue 3 , September , 2010 , Pages 201-208 ; 17298806 (ISSN) Kamali Eigoli, A ; Vossoughi, G. R ; Sharif University of Technology
    2010
    Abstract
    The motion of a stick-slip microrobot propelled by its piezoelectric unimorph legs is mathematically modeled. Using a continuously distributed mass model for the robot's body, the working equation of the mechanism is derived based on the assumption of linear Euler-Bernoulli beam theory and linear piezoelectric behavior. Moreover, the required condition for generating net motion is calculated in terms of physical characteristics of the microrobot. It is demonstrated that the higher the friction constant, then a lower average speed is obtained. Also, it is shown that a microrobot with heavier legs can move in a rougher environment. Regardless of the mass proportion between robot's main body... 

    Motion analysis of a vibrational micro-robot with two perpendicular harmonic actuators and deriving the design parameters in stick-slip-jump mode

    , Article Journal of Sound and Vibration ; Volume 372 , 2016 , Pages 266-282 ; 0022460X (ISSN) Jalili, H ; Vossoughi, G ; Salarieh, H ; Sharif University of Technology
    Academic Press  2016
    Abstract
    In this paper, the motion of a micro-robot with two perpendicular vibrational actuators is studied. In this work, separation of the micro-robot body from the substrate of motion takes place. The separation happens while the vertical force applied to the micro-robot body is greater than the micro-robot weight. In this condition, body of the micro-robot jumps apart from the substrate and then returns to it, and this motion will continue intermittently until it becomes damped. In this condition, the motion mechanism of "stick-slip" is not valid and we introduce a new mechanism of hybrid motion as "stick-slip-jump". In this case (hybrid motion), the micro-robot dynamics is modeled and the result... 

    Motion type analysis of a piezoelectric-actuated vibratory micro-robot in hybrid stick-slip-jump mode

    , Article Journal of Sound and Vibration ; Volume 436 , 2018 , Pages 81-94 ; 0022460X (ISSN) Jalili, H ; Salarieh, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2018
    Abstract
    In this paper, the stick-slip-jump motion of a micro-robot with two perpendicular vibratory actuators is studied. A practical model of this micro-robot is designed and fabricated with two Langevin type piezoelectric actuators, which are driven by harmonic voltages. Depending on the amplitude and frequency of the driving voltages of the micro-robot actuators, as well as their phase difference, the type of the motion dynamics and the states of the contact points in the motion (slipping or jumping) are determined. Considering the conditions of the contact points of the micro-robot, the motion is based on the combination of the friction drive principle (stick-slip) and jumping phenomenon. A... 

    Dynamic modeling, optimized design, and fabrication of a 2DOF piezo-actuated stick-slip mobile microrobot

    , Article Mechanism and Machine Theory ; Volume 133 , 2019 , Pages 514-530 ; 0094114X (ISSN) Asmari Saadabad, N ; Moradi, H ; Vossoughi, G. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper proposes an optimized design for a 2DOF linear-motion mobile microrobot. The forward motion of the microrobot is achieved by simultaneous excitation of the vertical and horizontal oscillators that create the stick-slip locomotion. Dynamic equations of motion for the microrobot are derived and simplified based on Coulomb friction. The horizontal and vertical elements are connected to the main mass by piezoelectric actuators and are set in oscillatory motion by applying a harmonic voltage to the actuators. The design parameters, including the perpendicularly-mounted masses, frequency, and phase difference of the excitations are tuned in order to achieve high locomotion velocity and... 

    Dynamic Analysis, Design, and Impelmentation of a Planar Piezo-actuated Stick-slip Microrobot

    , M.Sc. Thesis Sharif University of Technology Asmari Saadabad, Navid (Author) ; Vossoughi, Gholamreza (Supervisor) ; Moradi, Hamed (Supervisor)
    Abstract
    Due to small size, flexibility, and low cost of manufacturing, micorobots are potentially suitable for implementation in a broad range of applications. Control and inspection, medical utilities, manufacturing and micromanipulation of small-sized devices with nano-metric precisions, and precise measurements are some of the most important applications of microrobots. Mobile microrobots are one of the significant divisions of microrobots that are capable of movement with small steps and possess a motion range of at least several times the robot’s body length. In this project, Modulated Friction Inertial Drive (MFID) is utilized as a mechanism for creating a mobile microrobot. The micorobot is... 

    On the contact mechanics of a rolling cylinder on a graded coating. Part 2: Numerical results

    , Article Mechanics of Materials ; Volume 66 , 2013 , Pages 134-159 ; 01676636 (ISSN) Guler, M. A ; Alinia, Y ; Adibnazari, S ; Sharif University of Technology
    2013
    Abstract
    The analytical formulation of the fully coupled and the uncoupled rolling contact mechanics problems for all possible stick/slip regimes are derived in Part I (Alinia et al., 2013). In this part, we focus on the numerical algorithm, the iteration procedure and the numerical results. The coupled and the uncoupled solutions corresponding to each of the assumed stick/slip regimes are provided. The uncoupled solution provides an acceptable approximation to the problem for small coefficient of friction values. However, for high values of the coefficient of friction the problem should be solved in fully coupled form. In addition, the effect of several parameters such as the stiffness ratio, the... 

    Robust velocity control for an A-shaped micro-robot with stick-slip locomotion

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 230, Issue 14 , 2016 , Pages 2413-2426 ; 09544062 (ISSN) Moradian, H ; Vossoughi, G. R ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    In this paper, the problem of velocity control of a micro-robot's locomotion with nanometric resolution has been investigated. A sliding, A-shaped micro-robot, used in precision positioning applications is analyzed. This micro-robot is actuated by means of a piezoelectric stack actuator in order to produce translational and periodic motion. A dynamic model of the robot is proposed assuming linear behavior for the piezoelectric stack and Coulomb friction model. Then, in order to control the velocity of micro-robot, first a robust sliding mode control is used so that the relative angle between the legs in the micro-robot tracks a periodic reference signal. The velocity tracking for the... 

    Serrated flow during inhomogeneous bending deformation of bulk metallic glasses: From self-organized critical to chaotic dynamics

    , Article Journal of Non-Crystalline Solids ; Volume 505 , 2019 , Pages 62-71 ; 00223093 (ISSN) Asadi Khanouki, M. T ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this research, the dynamic behavior of serrated flows observed in the flexural stress-deflection curves during three-point bending (3 PB) tests on Zr-, Ti- and La-based bulk metallic glasses (BMGs) is statistically analyzed. Furthermore, the effect of strain rate on the serrations is studied. Based on the ductility of alloy, two distinct types of dynamics are detected. For more ductile alloys (Zr- and Ti-based BMGs) the stress drop magnitude of serrations obeys a power-law distribution of shear avalanches, which is an indicator of the self-organized critical (SOC) state in dynamics. In this case, the size of avalanches has no characteristic scale. In contrast, the size of serrations... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 12, Issue. PART A , 2010 , pp. 205-214 ; ISBN: 9780791843857 Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method

    , Article Finite Elements in Analysis and Design ; Volume 107 , December , 2015 , Pages 28-43 ; 0168874X (ISSN) Hirmand, M ; Vahab, M ; Khoei, A. R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, an Uzawa-type augmented Lagrangian contact formulation is presented for modeling frictional discontinuities in the framework of the X-FEM technique. The kinematically nonlinear contact problem is resolved based on an active set strategy to fulfill the Kuhn-Tucker inequalities in the normal direction of contact. The Coulomb's friction rule is employed to address the stick-slip behavior on the contact interface through a return mapping algorithm in conjunction with a symmetrized (nested) augmented Lagrangian approach. A stabilization algorithm is proposed for the robust imposition of the frictional contact constraints within the proposed augmented Lagrangian framework. Several... 

    Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 12, Issue PART A , 2010 , Pages 205-214 ; 9780791843857 (ISBN) Babahosseini, H ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the... 

    Dynamics modeling of nanoparticle in AFM-based manipulation using two nanoscale friction models

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 225-234 ; 9780791843857 (ISBN) Babahosseini, H ; Mahboobi, S. H ; Meghdari, A ; Sharif University of Technology
    Abstract
    Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of nanoparticle is crucial to have an accurate manipulation. In this paper, a comprehensive model of pushing based manipulation of a nanoparticle by AFM probe is presented. The proposed nanomanipulation model consists of all effective phenomena in nanoscale. Nanoscale interaction forces, elastic deformation in contact areas and friction forces in... 

    Modification of the infinite-dimensional neutral-type time-Delay dynamic model for the coupled axial⇓torsional vibrations in drill strings with a drag bit

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 15, Issue 8 , 2020 Tashakori, S ; Vossoughi, G ; Zohoor, H ; Azadi Yazdi, E ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2020
    Abstract
    Drill strings are subjected to complex coupled dynamics. Therefore, accurate dynamic modeling, which can represent the physical behavior of real drill strings, is of great importance for system analysis and control. The most widely used dynamic models for such systems are the lumped element models, which neglect the system distributed feature. In this paper, a dynamic model called neutral-type time delay model is modified to investigate the coupled axial–torsional vibrations in drill strings. This model is derived directly from the distributed parameter model by employing the d’Alembert method. Coupling of axial and torsional vibration modes occurs in the bit–rock interface. For the first...