Loading...
Search for: stimuli-responsiveness
0.006 seconds
Total 24 records

    Microfluidic manipulation of Core/Shell nanoparticles for oral delivery of chemotherapeutics: A new treatment approach for colorectal cancer

    , Article Advanced Materials ; Volume 28, Issue 21 , 2016 , Pages 4134-4141 ; 09359648 (ISSN) Hasani Sadrabadi, M. M ; Taranejoo, S ; Dashtimoghadam, E ; Bahlakeh, G ; Majedi, F.S ; Vandersarl, J. J ; Janmaleki, M ; Sharifi, F ; Bertsch, A ; Hourigan, K ; Tayebi, L ; Renaud, P ; Jacob, K. I ; Sharif University of Technology
    Wiley-VCH Verlag 
    Abstract
    A microfluidics approach to synthesize core-shell nanocarriers with high pH tunability is described. The sacrificial shell protects the core layer with the drugs and prevents their release in the severe pH conditions of the gastrointestinal tract, while allowing for drug release in the proximity of a tumor. The proposed nanoparticulate drug-delivery system is designed for the oral administration of cancer therapeutics  

    A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets

    , Article DARU, Journal of Pharmaceutical Sciences ; 2018 ; 15608115 (ISSN) Davatgaran Taghipour, Y ; Bahramsoltani, R ; Marques, A. M ; Naseri, R ; Rahimi, R ; Haratipour, P ; Panah, A. I ; Farzaei, M. H ; Abdollahi, M ; Sharif University of Technology
    Abstract
    Inflammatory bowel diseases (IBD), which is classified into Crohn’s disease and ulcerative colitis, are among chronic gastrointestinal diseases with unknown pathogenesis. Diverse strategies have been applied for the treatment of this chronic disease. However, selective and site-specific routes of drug delivery to the inflamed location of the colon remain of high importance. Consequently, the application and effects of natural products in the form of nanoformulation and stimuli responsive nanoparticles as a novel strategy for the treatment of IBD are discussed in this review article. This approach may potentially overcome some complications that are associated with conventional means of colon... 

    Applications of stimuli responsive hydrogels: A textile engineering approach

    , Article Journal of the Textile Institute ; Volume 104, Issue 11 , 2013 , Pages 1145-1155 ; 00405000 (ISSN) Bashari, A ; Hemmati Nejad, N ; Pourjavadi, A ; Sharif University of Technology
    2013
    Abstract
    Stimuli responsive hydrogels (SRHs) are smart materials with reversible changes in their properties through the environmental stimulus variations. Although SRHs have been used in various medical applications such as sensors, drug release systems and, etc., they are still being actively researched on other sectors such as functional textiles and smart clothing. One of the best methods to produce textiles with more functionality is smart finishing of textile by surface modifying stimuli responsive hydrogels. In this paper, literatures on SRHs applications, methods and application of some SRHs on textile have been thoroughly discussed  

    Smart and fragrant garment via surface modification of cotton fabric with cinnamon oil/stimuli responsive PNIPAAm/chitosan nano hydrogels

    , Article IEEE Transactions on Nanobioscience ; Volume 16, Issue 6 , 2017 , Pages 455-462 ; 15361241 (ISSN) Bashari, A ; Hemmatinejad, N ; Pourjavadi, A ; Sharif University of Technology
    Abstract
    This paper deals with obtaining aromatherapic textiles via applying stimuli-responsive poly N-isopropyl acryl amide (PNIPAAm) chitosan (PNCS) nano hydrogels containing cinnamon oil on cotton fabric and looks into the treated fabric characteristics as an antibacterial and temperaturepH responsive fabric. The semi-batch surfactant-free dispersion polymerization method was proposed to the synthesis of PNCS nano particles. The incorporation of modified β -cyclodextrin ( β-CD) into the PNCS nanohydrogel was performed in order to prepare a hydrophobic(cinnamon oil) carrier embedded in stimuli-responsive nanohydrogel. The β -CD postloading process of cinnamon oil in to the hydrogel nano particles... 

    Synthesis and Investigation of the Properties of Chromic Stimuli Responsive Polymers Based on Organic Compounds

    , Ph.D. Dissertation Sharif University of Technology Pourbadiei, Behzad (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    The main goal of this study is to prepare and investigate stimuli responsive structures that respond to the light and other environmental triggers. Also, investigating their applications in biological fields such as: drug delivery and tissue engineering, in addition to the application of these materials in the field of chemical sensors that show color change with changes in solvent, electric field and metal ions. In the matter of drug delivery, guest-host interactions were used to release anticancer drugs, in such a way that with ultraviolet light irradiation and simultaneously with the formation of the cis isomer, the connections between azobenzene groups and cyclodextrin rings are... 

    Effect of stimuli-responsive nano haydrogel finishing on cotton fabric properties

    , Article Indian Journal of Fibre and Textile Research ; Volume 40, Issue 4 , 2015 , Pages 431-436 ; 09710426 (ISSN) Bashari, A ; Hemmati Nejad, N ; Pourjavadi, A ; Sharif University of Technology
    National Institute of Science Communication and Information Resources (NISCAIR)  2015
    Abstract
    Cotton fabrics have been prepared with smart properties by functional finishing with stimuli-responsive nano gel. A biopolymer (chitosan) and a synthetic polymer (poly-NiPAAm) have been used for the synthesis of nano gel through semi-batch surfactant-free dispersion polymerization (SB-SFDP) method. The incorporation of nano gel to textile fabrics is achieved by pad-dry-cure procedure, using an aqueous nano gel dispersion and 1,2,3,4-butantetracarboxylic acid as a crosslinking agent. With this cross linking method, it is possible to integrate the nano gel into the cotton fabric’s structure with good resistance to washing. The changes in physiological comfort parameters of cotton fabric such... 

    Hydrophobic nanocarriers embedded in a novel dual-responsive poly(N-isopropylacrylamide)/chitosan/(cyclodextrin) nanohydrogel

    , Article Journal of Polymer Research ; Volume 20, Issue 10 , 2013 ; 1572-8935 (Online ISSN) Bashari, A ; Hemmatinejad, N ; Pourjavadi, A ; Sharif University of Technology
    2013
    Abstract
    The incorporation of modified β-cyclodextrin (β-CD) into a poly(N-isopropylacrylamide) (PNIPAAm)/chitosan (PNCS) nanohydrogel was studied. β-CD was functionalized with acrylic groups, with different numbers of vinyl bonds added per β-CD molecule. The surfactant-free dispersion polymerization (SFDP) semi-batch method was used to synthesize the nanohydrogel. Increasing the number of vinyl groups per β-CDAC (β-CD acrylate) molecule induced the formation of smaller nanogels with diameters ranging from 142 to 68 nm. The cyclodextrin-modified dual-responsive nanogels obtained presented an LCST (lower critical solution temperature) in aqueous medium at around 31 C. The incorporation of β-CDAC into... 

    Loading of Doxorubicin on Stimuli-Responsive Nanocarriers and Investigation of its Release

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Mahshid (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Drug targeting to specific organs and tissues has become one of the critical endeavors of the new century. Magnetic nanoparticles have gained a lot of attention in biomedical and industrial application. Doxorubicin is an effective anti-cancer drug in the treatment of many types of cancers. The aim of this study is to load doxorubicin on stimuli-responsive nanocarriers. These nanocarriers are prepared from magnetic nanoparticles. Then these magnetic nanparticles are coated by copolymer of poly(glycidyl methacrylate) then reacted with hydrazine and hydrazide functional group is formed that can chemically be bonded with the anticancer drug doxorubicin via a hydrazone bond formation. This... 

    Synthesis of Ligand Containing Azulene Group by Cross Coupling and Study of Complexation with Late Transition Metals

    , M.Sc. Thesis Sharif University of Technology Mehranpoor, Nahid (Author) ; Jamali, Sirous (Supervisor)
    Abstract
    In this study the azulene-based ligand 2-(2-pyridylazulene) has been prepared by the coupling reaction between 2-bromopyridine and 2-(2_(6methyl azulene)) -4,4,5,5 tetra methyl-1,3,2- dioxaborolane in the presence of Palladium catalyst, [PdCl2(PPh3)2] .This ligand completely characterized by one and two dimentional NMR spectroscopy and its structure determined using X-ray crystallography method. The reaction of this ligand with 0.5 equivalent of Copper (Ⅰ) or Gold (Ⅰ) metal precursors, [Cu(CH3CN)4]PF6 or [Au(SMe2)Cl] gave the mononuclear Copper (Ⅰ) complex, [Cu (2-(2-pyridyl)6-methylazulene)2]PF6, 1 or Gold (Ⅰ) complex, [Au(2-(2-pyridyl)6-methylazulene)2], 2 respectively. Complexes 1 and 2... 

    Synthesis and Evaluation of Molybdenum Disulfide for Combined Photothermal-chemo Therapy

    , Ph.D. Dissertation Sharif University of Technology Salimi, Marzieh (Author) ; Vosoughi, Manouchehr (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor) ; Delavari, Hamid (Co-Supervisor)
    Abstract
    New methods of cancer treatment are always the attention of researchers all over the world, among which the photothermal treatment method is of particular importance. In addition to being easy, this treatment method has the least invasiveness. Studies have shown that combining this method with other methods such as chemotherapy not only can be very effective in destroying tumor tissue, but can significantly reduce the side effects of chemotherapy drugs.In order to apply the photothermal treatment method, an effective photothermal agent is needed. Molybdenum disulfide nanosheets have performed successfully in this field, which have been of great interest, due to their high efficiency in... 

    Smart mesoporous silica nanoparticles for controlled-release drug delivery

    , Article Nanotechnology Reviews ; Volume 5, Issue 2 , 2016 , Pages 195-207 ; 21919089 (ISSN) Karimi, M ; Mirshekari, H ; Aliakbari, M ; Sahandi Zangabad, P ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2016
    Abstract
    Stimuli-responsive controlled-release nanocarriers are promising vehicles for delivery of bioactive molecules that can minimize side effects and maximize efficiency. The release of the drug occurs when the nanocarrier is triggered by an internal or external stimulus. Mesoporous silica nanoparticles (MSN) can have drugs and bioactive cargos loaded into the high-capacity pores, and their release can be triggered by activation of a variety of stimulus-responsive molecular "gatekeepers" or "nanovalves." In this mini-review, we discuss the basic concepts of MSN in targeted drug-release systems and cover different stimulus-responsive gatekeepers. Internal stimuli include redox, enzymes, and pH,... 

    Stimuli-responsive emissive behavior of 1- and 1,3-connectivities in azulene-based imine ligands: Cycloplatination and Pt-Tl dative bond formation

    , Article Dalton Transactions ; Volume 46, Issue 34 , 2017 , Pages 11327-11334 ; 14779226 (ISSN) Jamali, S ; Mousavi, N. A ; Bagherzadeh, M ; Kia, R ; Samouei, H ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    The preparation of two new azulene-based imine ligands N-(2,6-diisopropylphenyl)-6-tBu-1-azulenylmethaneimine, 3, and N-(2,6-diisopropylphenyl)-6-tBu-3-(2,6-diisopropylphenyliminomethyl)-1-azulenylmethaneimine, 4, is described. These imine ligands display stimuli responsive emissive behavior and their fluorescence can be switched on and off by protonation and neutralization with trifluoroacetic acid and trimethylamine, respectively. The cyclometalation of the monoimine ligand by platinum gave the cyclometalated complex [PtMe(SMe2)(3′)], 5, (where the prime denotes the cyclometalated ligand 3). The reaction of 5 with TlPF6 yields the trinuclear bent Pt2Tl complex {[PtMe(SMe2)(3′)]2(μ-Tl)}PF6,... 

    Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery

    , Article Journal of Materials Chemistry B ; Volume 8, Issue 32 , 2020 , Pages 7275-7287 Sabourian, P ; Ji, J ; Lotocki, V ; Moquin, A ; Hanna, R ; Frounchi, M ; Maysinger, D ; Kakkar, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Easily assembled and biocompatible chitosan/hyaluronic acid nanoparticles with multiple stimuli-responsive ability are ideally suited for efficient delivery of therapeutic agents under specific endogenous triggers. We report a simple and versatile strategy to formulate oxidative stress and pH-responsive chitosan/hyaluronic acid nanocarriers with high encapsulation efficiencies of small drug molecules and nerve growth factor protein. This is achieved through invoking the dual role of a thioketal-based weak organic acid to disperse and functionalize low molecular weight chitosan in one-pot. Thioketal embedded chitosan/hyaluronic acid nanostructures respond to oxidative stress and show... 

    Multi-stimuli-responsive hydrogels and their medical applications

    , Article New Journal of Chemistry ; Volume 45, Issue 35 , 2021 , Pages 15705-15717 ; 11440546 (ISSN) Pourjavadi, A ; Heydarpour, R ; Tehrani, Z. M ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    The functionality of multi-stimuli-responsive hydrogels in physiological states is the reason for the increased attention of hydrogels nowadays. Multi-stimuli-responsive hydrogels exhibit tunable changes in swelling or mechanical properties in response to predetermined combinations of stimuli such as pH, temperature, ionic strength, electric field, magnetic field, light, chemical triggers, enzyme concentration, redox species, reactive oxygen species (ROS), and glucose levels. This review summarizes the recent advances in multi-stimuli-responsive hydrogels used in medical approaches. The first part of the review highlights the medical applications of polymer-based and supramolecular hydrogels... 

    Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance

    , Article Expert Opinion on Drug Delivery ; Volume 19, Issue 4 , 2022 , Pages 355-382 ; 17425247 (ISSN) Ashrafizadeh, M ; Saebfar, H ; Gholami, M.H ; Hushmandi, K ; Zabolian, A ; Bikarannejad, P ; Hashemi, M ; Daneshi, S ; Mirzaei, S ; Sharifi, E ; Kumar, A.P ; Khan, H ; Heydari Sheikh Hossein, H ; Vosough, M ; Rabiee, N ; Kumar Thakur, V ; Makvandi, P ; Mishra, Y. K ; Tay, F. R ; Wang, Y ; Zarrabi, A ; Orive, G ; Mostafavi, E ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Introduction: The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. Areas covered: The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer, GO-mediated photothermal therapy, and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. Expert opinion: GO... 

    Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents

    , Article Journal of Controlled Release ; Volume 317 , 2020 , Pages 216-231 Sabourian, P ; Tavakolian, M ; Yazdani, H ; Frounchi, M ; van de Ven, T. G. M ; Maysinger, D ; Kakkar, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Despite a diverse range of active pharmaceutical agents currently at our disposal, high morbidity rate diseases continue to pose a major health crisis globally. One of the important parameters in this regard is the controlled cargo delivery at desired sites. Among a variety of synthetic and natural macromolecular systems, chitosan, an abundant biopolymer, offers a platform for tailored architectures that could have high loading capacity of cargo, target and deliver. Stimuli directed accumulation of vehicles and drug release is an area of direct relevance to biomedical applications. In this review, we highlight essential characteristics of modified chitosan that present themselves for... 

    Targeted Theranostic Delivery System Based on Liposomes Containing Graphene Quantum Dots and Drug Nanoparticles For Monitoring and Treatment of Breast Cancer

    , Ph.D. Dissertation Sharif University of Technology Ramedani, Arash (Author) ; Simchi, Abdolreza (Supervisor) ; Sabzevari, Omid (Supervisor)
    Abstract
    Theranostic liposomes have recently found a broad range of applications in nanomedicine due to stability, the high solubility of biomacromolecules, bioavailability, efficacy, and low adverse effects. However, the limitations of liposomes concerning the short systemic circulation in the body, limited controllability of the release rate, and the inability of in vivo imaging remain challenging. Herein, the development of novel hybrid ultrasound-activated piezoelectric nanoparticles based on a hybrid liposome nanocarrier composed of poly(vinylidene fluoride‐trifluoroethylene), graphene quantum dots (GQDs), and Silibinin (a hydrophobic drug) is presented. The hybrid nanoparticles are an... 

    Surface modification of cotton fabric with dual-responsive PNIPAAm/chitosan nano hydrogel

    , Article Polymers for Advanced Technologies ; Volume 24, Issue 9 , MAY , 2013 , Pages 797-806 ; 10427147 (ISSN) Bashari, A ; Hemmatinejad, N ; Pourjavadi, A ; Sharif University of Technology
    2013
    Abstract
    The present study deals with preparing stimuli-responsive poly N-isopropyl acryl amide/chitosan (PNCS) nano hydrogel and looks into their effects as a surface modifying system of cotton fabric. The semi-batch surfactant-free emulsion polymerization method was proposed to reduce the size of particle and synthesis of PNCS nano particles. Fourier transform infrared, nuclear magnetic resonance, differential scanning calorimetry, scanning electron microscopy and dynamic light scattering methods confirmed the nano size of synthesized PNCS particles and sensitivity of these nano particles to the different temperature and pH, respectively. The water retention capacity (WRC) and carboxyl content of... 

    Dual-sensitive hydrogel nanoparticles based on conjugated thermoresponsive copolymers and protein filaments for triggerable drug delivery

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 23 , 17 May , 2018 , Pages 19336-19346 ; 19448244 (ISSN) Ghaffari, R ; Eslahi, N ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this study, novel hydrogel nanoparticles with dual triggerable release properties based on fibrous structural proteins (keratin) and thermoresponsive copolymers (Pluronic) are introduced. Nanoparticles were used for curcumin delivery as effective and safe anticancer agents, the hydrophobicity of which has limited their clinical applications. A drug was loaded into hydrogel nanoparticles by a single-step nanoprecipitation method. The drug-loaded nanoparticles had an average diameter of 165 and 66 nm at 25 and 37 °C, respectively. It was shown that the drug loading efficiency could be enhanced through crosslinking of the disulfide bonds in keratin. Crosslinking provided a targeted release... 

    Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposite with core-shell structure via RAFT polymerization

    , Article Composites Science and Technology ; Volume 188 , 2020 Pourjavadi, A ; Rahemipoor, S ; Kohestanian, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A novel multi stimuli-responsive silica nanocomposite with a core-shell structure is synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The SiO2 nanoparticles are chemically modified via 3-(trimethoxylsilyl) propyl methacrylate (MPS) which they are used in the core of nanocomposite. The macro-RAFT agent is prepared by RAFT polymerization of N-isopropylacrylamide (NIPAM), spirooxazine acryloyl monomer (SOM), and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT as a RAFT agent). Finally, the smart nanocomposite is prepared by reaction between the macro-RAFT agent and 2-(Dimethylamino) ethyl methacrylate (DMAEMA) as a monomer. SOM as a...