Loading...
Search for: stirling-engine
0.007 seconds

    Design and optimization of a cascade thermoacoustic Stirling engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 227, Issue 7 , September , 2013 , Pages 814-824 ; 09576509 (ISSN) Karimi, M ; Ghorbanian, K ; Sharif University of Technology
    Professional Engineering Publishing  2013
    Abstract
    This article deals with the design and optimization of a cascade thermoacoustic Stirling engine. Different configurations for cascade thermoacoustic Stirling heat engine are investigated. A simplified model is proposed to enable initial design guidelines. The most important characteristics of the cascade system are examined. The results indicate that the thermoacoustic engines in cascade configuration may achieve very low onset temperatures. A suitable configuration is selected and the locations and dimensions of different thermoacoustic units are optimized to achieve low onset temperatures as well as high values for the acoustic power output and efficiency. The results support the... 

    An investigation on the effects of gas pressure drop in heat exchangers on dynamics of a free piston stirling engine

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 30, Issue 2 , 2017 , Pages 1243-1252 ; 1728144X (ISSN) Zare, S ; Tavakolpour Saleh, A. R ; Aghajanzadeh, O ; Sharif University of Technology
    Materials and Energy Research Center  2017
    Abstract
    This paper is devoted to study the effects of pressure drop in heat exchangers on the dynamics of a free piston Stirling engine. First, the dynamic equations governing the pistons as well as the gas pressure equations for hot and cold spaces of the engine are extracted. Then, by substituting the obtained pressure equations into the dynamic relationships the final nonlinear dynamic equations governing the free piston Stirling engine are acquired. Next, effects of the gas pressure drop in heat exchangers on maximum strokes of the pistons and their velocities and accelerations are investigated. Furthermore, influences of pressure drop increase in the heat exchangers on maximum and minimum gas... 

    Design and construction of a two-phase fluid piston engine based on the structure of fluidyne

    , Article Energy ; Volume 127 , 2017 , Pages 660-670 ; 03605442 (ISSN) Moazami Goudarzi, H ; Yarahmadi, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Engines that extract energy from low-grade heat sources, e.g., from other processes, have received considerable attention recently. The use of Fluidyne, which is a liquid piston Stirling engine, is quite popular. Herein, we explore the use of liquid-to-vapor phase change in a Fluidyne. This provides two considerable differentiators; (1) exploitation of very low temperature difference ΔT≈30 K, and (2) relatively low temperature ΔT≈330 K heat sources, for producing mechanical work, and thus electrical energy. The influence of three operating parameters, i.e., input heat flux, working fluid, and filling ratio, on the performance of the engine was characterized. Their optimum values, which yield... 

    Design and Construction of a 100 We Solar Dish Stirling and Evaluation for the Regional Conditions of Tehran

    , M.Sc. Thesis Sharif University of Technology Reshad, Ali (Author) ; Boroushaki, Mehrdad (Supervisor) ; Sattari, Sorena (Co-Advisor) ; Hooshang, Mazdak (Co-Advisor)
    Abstract
    Dish-stirling system with an efficiency of nearly 30% is the most efficient technology among solar energy technologies. This system includes four main parts; Parabolic dish, solar tracker, receiver and Stirling engine and generator. In this system, first parabolic dish concentrates sun rays on its focus. A receiver is put on the focus to receive the heat radiated from dish. This receiver transfers the heat to a Stirling engine. In Stirling engine, expansion and contraction of gas helps piston to move and finally rotational mechanical work is done. With coupling a generator and Stirling engine we can generate electricity. Also for keeping the focus of sun rays on receiver we should have sun... 

    Thermo-economic analysis and multi-objective optimization of a solar dish Stirling engine

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Rostami, M ; Assareh, E ; Moltames, R ; Jafarinejad, T ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    Stirling engines operate in a variety of temperatures and the electric power production via dish Stirling systems could be considered as an appropriate alternative for high-temperature solar concentrator energy harvesting systems. To this end, by performing various studies and analyses on the engine, Stirling cycle, and heat exchangers while utilizing the solar energy as the input thermal energy of the Stirling engine, parameters with the highest effect on the output power and engine stability are detected and considered as optimization variables. In this case, output power, thermal efficiency, and economic evaluation are taken to be the three suitable objective functions for multi-objective... 

    Thermo-economic analysis and multi-objective optimization of a solar dish Stirling engine

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 43, Issue 22 , 2021 , Pages 2861-2877 ; 15567036 (ISSN) Rostami, M ; Assareh, E ; Moltames, R ; Jafarinejad, T ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Stirling engines operate in a variety of temperatures and the electric power production via dish Stirling systems could be considered as an appropriate alternative for high-temperature solar concentrator energy harvesting systems. To this end, by performing various studies and analyses on the engine, Stirling cycle, and heat exchangers while utilizing the solar energy as the input thermal energy of the Stirling engine, parameters with the highest effect on the output power and engine stability are detected and considered as optimization variables. In this case, output power, thermal efficiency, and economic evaluation are taken to be the three suitable objective functions for multi-objective...