Loading...
Search for: stream-function
0.007 seconds

    Modelling recrystallization kinetics during hot rolling of AA5083

    , Article Journal of Materials Processing Technology ; Volume 184, Issue 1-3 , 2007 , Pages 345-353 ; 09240136 (ISSN) Toloui, M ; Serajzadeh, S ; Sharif University of Technology
    2007
    Abstract
    In this work, a mathematical model has been developed to predict distributions of temperature, strain and strain rate during hot rolling as well as the subsequent microstructural changes after hot deformation. For doing so, a 2-D finite element analysis together with a stream function method have been coupled to calculate temperature distribution and velocity field within the rolling metal while the roll force has been estimated, through using an upper bound solution. Also the additivity rule and Avrami-type equation have been employed to predict the kinetics of static recrystallization after hot rolling. The model has been examined on AA5083. Hot rolling experiments have been conducted... 

    Development of an Incompressible Smoothed Particle Hydrodynamics Method based on Vorticity-stream Function Formulation

    , M.Sc. Thesis Sharif University of Technology Alibakhshian, Mohammad Reza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, an incompressible smoothed particle hydrodynamics method based on vorticity-stream function (VSF-SPH) formulation is developed and assessed for simulating steady and unsteady incompressible flows. The vorticity-stream function formulation in the Eulerian reference frame is written in a Lagrangian reference frame to provide an appropriate incompressible SPH algorithm. The advantage of the proposed smoothed particle hydrodynamics method based on the vorticity-stream function (VSF-SPH) formulation over the weakly compressible SPH (WCSPH) is that the VSF-SPH method is a truly incompressible SPH algorithm and it does not involve any approximate enforcement of the... 

    Investigation into occurring dynamic strain aging in hot rolling of AA5083 using finite elements and stream function method

    , Article Materials Science and Engineering A ; Volume 486, Issue 1-2 , 2008 , Pages 138-145 ; 09215093 (ISSN) Serajzadeh, S ; Sheikh, H ; Sharif University of Technology
    2008
    Abstract
    Two-dimensional finite element analysis together with stream function and neural network models are employed to determine thermo-mechanical behavior during hot strip rolling of AA5083. An appropriate velocity field and stream function is first determined using the rule of volume constancy and upper bound theorem and then temperature field within the metal is predicted by means of a two-dimensional conduction-convection model. In order to consider the effect of flow stress and its dependence on temperature, strain and strain rate, a neural network model is also employed in the analysis. Based on the performed tensile tests, two different neural network models are constructed one for smooth... 

    Meshless local petrov-galerkin (MLPG) method for incompressible viscous fluid flows

    , Article 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2006 , 2006 ; 0791837831 (ISBN); 9780791837832 (ISBN) Haji Mohammadi, M ; Sharif University of Technology
    2006
    Abstract
    In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of unsteady incompressible flows, governed by the Navier-Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based only on a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction eq. (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Moving Least Square approximation (MLS) is employed in shape... 

    Microstructural evolution on streamlines during hot strip rolling using internal state variables

    , Article Journal of Materials Processing Technology ; Volume 209, Issue 4 , 2009 , Pages 1717-1728 ; 09240136 (ISSN) Toloui, M ; Serajzadeh, S ; Sharif University of Technology
    2009
    Abstract
    In this work, a numerical-based model has been proposed to calculate distributions of temperature, strain and strain rate during hot rolling as well as the subsequent microstructural changes after hot rolling of an aluminum alloy. For doing so, a transient finite difference analysis together with a stream function method have been coupled to calculate temperature distribution and velocity field within the rolling metal. A new approach considering internal state variables method has been employed to predict the kinetics of static recrystallization after hot rolling. The predicted results were then compared with the experimental ones and a good consistency was observed between the two sets of... 

    Investigation on Thermo-mechanical Behavior of AA5086 During Warm and Hot Rolling Operation

    , M.Sc. Thesis Sharif University of Technology Asgharzadeh, Amir (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    A mathematical model has been proposed to estimate the deformation pattern and the required power in cold plate rolling using the stream function method and upper bound theorem. In the first place admissible velocity distributions as well as the geometry of deformation zone were derived from the proposed stream functions. Then, the optimum velocity field was obtained by minimization of the power function computed based on the upper bound theorem. Then a steady state heat transfer equation has been solved in whole model using finite element method. In order to verify the predictions, rolling experiments on aluminum plates were conducted and also, a finite element analysis performed employing... 

    Development of a stream function-upper bound analysis applicable to the process of plate rolling

    , Article Multidiscipline Modeling in Materials and Structures ; Volume 12, Issue 2 , 2016 , Pages 254-274 ; 15736105 (ISSN) Asgharzadeh, A ; Serajzadeh, S ; Sharif University of Technology
    Emerald Group Publishing Ltd 
    Abstract
    The purpose of this paper is to develop a mathematical solution to estimate the deformation pattern and required power in cold plate rolling using coupled stream function method and upper bound theorem. Design/methodology/approach-In the first place, an admissible velocity field and the geometry of deformation zone are derived from a new stream function. Then, the optimum velocity field is obtained by minimizing the corresponding power function. Also, to calculate the adiabatic heating during high speed rolling operations, a two-dimensional conduction-convection problem is sequentially coupled with the mechanical model. To verify the predictions, rolling experiments on aluminum plates are... 

    An approximated solution to the 2D incompressible Navier-Stokes equations via Adomian Decomposition Method

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 7 , 2006 , Pages 878-885 ; 11092769 (ISSN) Najafi, M ; Taeibi Rahni, M ; Aavani, K ; Sharif University of Technology
    2006
    Abstract
    The Adomian Decomposition Method (ADM) for solving the highly non-linear vorticity-stream function formulation of 2D incompressible Navier-Stokes equations has been implemented. The analysis is accompanied by numerical boundary conditions. Also, numerical simulation, using finite difference method (FDM), is performed for comparison purposes. The obtained results only for few terms of the expansion are presented. Because present software such as Mathematica/Maple can not calculate many terms (for example: up to 10 terms) of solution and then ADM approach of this problem is an open problem case  

    Stabilized Meshless Local Petrov-Galerkin (MLPG) method for incompressible viscous fluid flows

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 29, Issue 2 , 2008 , Pages 75-94 ; 15261492 (ISSN) Haji Mohammadi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of steady incompressible flows, governed by the Navier-Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based on only a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction equation (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Radial basis functions (RBF) interpolation is employed in shape... 

    Thermo-mechanical analysis of cold extrusion process using stream function and finite element methods

    , Article Multidiscipline Modeling in Materials and Structures ; Volume 9, Issue 1 , 2013 , Pages 128-139 ; 15736105 (ISSN) Hosseinabadi, H. G ; Serajzadeh, S ; Sharif University of Technology
    2013
    Abstract
    Purpose - The purpose of this paper is to propose a mathematical model to estimate required energy and temperature distribution during cold extrusion process. Design/methodology/approach - An admissible velocity field is generated based on stream function technique. Then, the required energy and the temperature distributions in the metal and the extrusion die are determined by a coupled upper bound-finite element analysis. Findings - To examine the proposed model, cold extrusion of AA6061-10%SiCp is considered and the predicted extrusion force-displacement diagrams in different reductions are compared with the experimental ones and reasonable agreement is observed. Furthermore, it... 

    A coupled stream function-finite element analysis for wire drawing processes

    , Article International Journal of Advanced Manufacturing Technology ; Volume 57, Issue 9-12 , 2011 , Pages 917-926 ; 02683768 (ISSN) Hosseinabadi, H. G ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    A numerical approach has been developed based on the stream function technique and the finite element analysis to predict required power and temperature rise in wire drawing processes. An admissible velocity field is first proposed using a stream function and then power consumption in the wire drawing is optimized to achieve sensible and unique deformation geometry. In addition, the finite element method together with axi-symmetric Petrov-Galerkin algorithm is coupled with the deformation model to assess the temperature distribution in both the deforming wire and the die during the process. The work hardening effects are also considered in the model both in the deformation zone and on the...