Loading...
Search for: structural-configurations
0.005 seconds

    Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 2: numerical evaluations

    , Article Journal of Thermal Stresses ; Volume 40, Issue 11 , 2017 , Pages 1402-1416 ; 01495739 (ISSN) Filippi, M ; Entezari, A ; Carrera, E ; Sharif University of Technology
    Abstract
    This article aims to evaluate the high-fidelity one-dimensional finite elements that have been proposed in the companion article (Part 1). Simple structural configurations that are subjected to different loading and boundary conditions have been considered to demonstrate the generality of the proposed approach. Static, quasi-static, and dynamic analyses of the coupled and uncoupled thermoelasticity have been performed. The kinematics of the beam elements have been obtained using bidimensional Lagrangian expansions with different polynomial orders. In particular, bilinear, biquadratic, and bicubic expansions have been adopted to approximate both displacements and temperature change field.... 

    Aeroelastic stability and response of composite swept wings in subsonic flow using indicial aerodynamics

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 135, Issue 5 , 2013 ; 10489002 (ISSN) Sina, S. A ; Farsadi, T ; Haddadpour, H ; Sharif University of Technology
    2013
    Abstract
    In this study, the aeroelastic stability and response of an aircraft swept composite wing in subsonic compressible flow are investigated. The composite wing was modeled as an anisotropic thin-walled composite beam with the circumferentially asymmetric stiffness structural configuration to establish proper coupling between bending and torsion. Also, the structural model consists of a number of nonclassical effects, such as transverse shear, material anisotropy, warping inhibition, nonuniform torsional model, and rotary inertia. The finite state form of the unsteady aerodynamic loads have been modeled based on the indicial aerodynamic theory and strip theory in the subsonic compressible flow.... 

    Effects of structural configuration on vibration control of smart laminated beams under random excitations

    , Article Journal of Mechanical Science and Technology ; Volume 24, Issue 5 , 2010 , Pages 1119-1125 ; 1738494X (ISSN) Zabihollah, A ; Sharif University of Technology
    Abstract
    The influence of structural configuration on vibration responses of smart laminated beams under random loading is studied. The effect of laminate configurations and locations of sensors/actuators in the smart system is also investigated. The layer-wise approximation for displacement and electric potential is utilized to construct the finite element model. The closed-loop control response is determined through an optimal control algorithm based on the Linear Quadratic Regulator (LQR). The correlation coefficient between the input random force and the applied actuating voltage for various configurations is also computed. It is revealed that for softer configurations, the correlation...