Loading...
Search for: structural-geology
0.011 seconds

    Field Scale Characterization of Geological Formations Using Percolation Theory

    , Article Transport in Porous Media ; Vol. 92, issue. 2 , March , 2012 , p. 357-372 ; ISSN: 1693913 Sadeghnejad, S ; Masihi, M ; Shojaei, A ; Pishvaie, M ; King, P. R ; Sharif University of Technology
    Abstract
    The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivity, hydraulic conductivity, and breakthrough time behavior between an injector and a producer within such systems. In particular, a three-dimensional overlapping sandbody model is considered which assumes that the geological formation can be split into either conductive flow units (i. e., good sands) or non-conductive units (i. e., poor sands). The... 

    Investigation of thermo-mechanical response of a geothermal pile through a small-scale physical modelling

    , Article 2nd International Conference on Energy Geotechnics, ICEGT 2020, 20 September 2020 through 23 September 2020 ; Volume 205 , 2020 Hashemi Senejani, H ; Ghasemi Fare, O ; Yazdani Cherati, D ; Jafarzadeh, F ; Sharif University of Technology
    EDP Sciences  2020
    Abstract
    Energy piles have been used around the world to harvest geothermal energy to heat and cool residential and commercial buildings. In order to design energy geo-structures, thermo-mechanical response of the geothermal pile must be carefully understood. In this paper, a small scale physical model is designed and a series of heating thermal cycles with various vertical mechanical loads are performed. The instrumented pile is installed inside a dry sand bed. Changes in pile head displacement, shaft strains and pile and sand temperatures are monitored using an LVDT, strain gauges and thermocouples, respectively. Prolonged heating cycles, which would continue until boundary temperature changes,... 

    Field scale characterization of geological formations using percolation theory

    , Article Transport in Porous Media ; Volume 92, Issue 2 , 2012 , Pages 357-372 ; 01693913 (ISSN) Sadeghnejad, S ; Masihi, M ; Shojaei, A ; Pishvaie, M ; King, P. R ; Sharif University of Technology
    2012
    Abstract
    The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivity, hydraulic conductivity, and breakthrough time behavior between an injector and a producer within such systems. In particular, a three-dimensional overlapping sandbody model is considered which assumes that the geological formation can be split into either conductive flow units (i. e., good sands) or non-conductive units (i. e., poor sands). The... 

    The effect of open trench on active foundation isolation using physical modeling

    , Article 6th International Conference on Physical Modelling in Geotechnics - Physical Modelling in Geotechnics - 6th ICPMG '06, Hong Kong, 4 August 2006 through 6 August 2006 ; Volume 2 , 2006 , Pages 1217-1222 ; 0415415861 (ISBN); 9780415415866 (ISBN) Jafarzadeh, F ; Ghayoomi, M ; Bahmanpour, A ; Sharif University of Technology
    2006
    Abstract
    Dynamic loads in many projects cause vibration in soil. The propagated energy has a destructive effect on the foundation of the adjacent structures. One of the suitable methods for preventing these harmful waves is active isolation. In this paper the mentioned phenomena is studied by conducting some physical model tests. The loose sandy models are excited by impact type load of a tamper and the response for models with and without trench are measured at different points. Two types of closed form or continuous trenches are used. In closed form trench models, the effect of trench on acceleration attenuation and the ratio of vertical to horizontal accelerations were investigated. In continuous... 

    Effect of film morphology on water oxidation enhancement in NiFeCo modified hematite photoanodes

    , Article Surface and Coatings Technology ; Volume 421 , 2021 ; 02578972 (ISSN) Eftekharinia, B ; Sobhkhiz Vayghan, N ; Esfandiar, A ; Dabirian, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Hematite (α-Fe2O3) is a promising candidate for water oxidation applications due to its abundance in the earth crust and its suitable bandgap. However, hematite performance is severely limited by electron-hole recombination at its interface with the electrolyte; something that can be addressed using electrocatalysts. In this report, we evaluate the influence of a ternary NiFeCo co-catalyst to enhance the water oxidation performance of hematite photoanodes. Thus, NiFeCo co-catalyst is optimized for hematite thin films with i) dense and ii) porous (nano-rod) morphologies. Both hematite films are prepared using electron beam evaporation method followed by an annealing step and NiFeCo... 

    Analysis of well testing results for single phase flow in reservoirs with percolation structure

    , Article Oil and Gas Science and Technology ; Volume 76 , 2021 ; 12944475 (ISSN) Shahrian, E ; Masihi, M ; Sharif University of Technology
    Editions Technip  2021
    Abstract
    Constructing an accurate geological model of the reservoir is a preliminary to make any reliable prediction of a reservoir's performance. Afterward, one needs to simulate the flow to predict the reservoir's dynamic behaviour. This process usually is associated with high computational costs. Therefore, alternative methods such as the percolation approach for rapid estimation of reservoir efficiency are quite desirable. This study tries to address the Well Testing (WT) interpretation of heterogeneous reservoirs, constructed from two extreme permeabilities, 0 and K. In particular, we simulated a drawdown test on typical site percolation mediums, occupied to fraction "p"at a constant rate Q/h,... 

    Thermo-mechanical analysis of Roller Compacted Concrete (RCC) dams (Jahgin Dam)

    , Article Proceedings of the Symposium on the Application of Geophyics to Engineering and Environmental Problems, SAGEEP, 29 March 2009 through 2 April 2009, Fort Worth, TX ; Volume 1 , 2009 , Pages 417-427 ; 15548015 (ISSN) ; 9781615670512 (ISBN) Shamsai, A ; Ghaemian, M ; Azimfar, S. M ; Sharif University of Technology
    Abstract
    In this paper a procedure for two-dimensional unsteady thermo-mechanical analysis of layered structures is presented, allowing the determination of the temperature and stress field at each step the construction period. The finite element method is employed in the methodology. Numerical simulation are focused on concrete structures, particularly roller compacted concrete (RCC) dams. A time varying elasticity modulus is introduced in the model. One case study is presented and analysis under different design approaches. Thermal effects must be considered in the process of designing of certain types of concrete structures in order to prevent the damage during either the construction phase (early... 

    The effect of foundation embedment on inelastic response of structures

    , Article Earthquake Engineering and Structural Dynamics ; Volume 38, Issue 4 , 2009 , Pages 423-437 ; 00988847 (ISSN) Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2009
    Abstract
    In this research, a parametric study is carried out on the effect of soil-structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub-structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub-structure is considered as a homogeneous half-space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil-structure system is then analyzed subjected...