Loading...
Search for: subsonic-aerodynamics
0.009 seconds

    Evaluation of quasi-steady aerodynamic modeling for flutter prediction of aircraft wings in incompressible flow

    , Article Thin-Walled Structures ; Volume 44, Issue 9 , 2006 , Pages 931-936 ; 02638231 (ISSN) Haddadpour, H ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    2006
    Abstract
    In this paper, the aeroelastic behavior and flutter instability of aircraft wings in subsonic incompressible flight speed regime are investigated. Quasi-steady and unsteady aerodynamic models are used for aerodynamic modeling and the obtained aeroelastic predictions are compared to those available in the specialized literature. Based on a number of test cases, it is shown that the quasi-steady aerodynamic models are inadequate for the determination of aeroelastic behavior and flutter boundary of aircraft wings in the incompressible flight speed range. © 2006 Elsevier Ltd. All rights reserved  

    Effect of thrust on the aeroelastic instability of a composite swept wing with two engines in subsonic compressible flow

    , Article Journal of Fluids and Structures ; Volume 36 , 2013 , Pages 18-31 ; 08899746 (ISSN) Firouz Abadi, R. D ; Askarian, A. R ; Zarifian, P ; Sharif University of Technology
    2013
    Abstract
    This paper aims to investigate aeroelastic stability boundary of subsonic wings under the effect of thrust of two engines. The wing structure is modeled as a tapered composite box-beam. Moreover, an indicial function based model is used to calculate the unsteady lift and moment distribution along the wing span in subsonic compressible flow. The two jet engines mounted on the wing are modeled as concentrated masses and the effect of thrust of each engine is applied as a follower force. Using Hamilton's principle along with Galerkin's method, the governing equations of motion are derived, then the obtained equations are solved in frequency domain using the K-method and the aeroelastic... 

    Aeroelastic stability and response of composite swept wings in subsonic flow using indicial aerodynamics

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 135, Issue 5 , 2013 ; 10489002 (ISSN) Sina, S. A ; Farsadi, T ; Haddadpour, H ; Sharif University of Technology
    2013
    Abstract
    In this study, the aeroelastic stability and response of an aircraft swept composite wing in subsonic compressible flow are investigated. The composite wing was modeled as an anisotropic thin-walled composite beam with the circumferentially asymmetric stiffness structural configuration to establish proper coupling between bending and torsion. Also, the structural model consists of a number of nonclassical effects, such as transverse shear, material anisotropy, warping inhibition, nonuniform torsional model, and rotary inertia. The finite state form of the unsteady aerodynamic loads have been modeled based on the indicial aerodynamic theory and strip theory in the subsonic compressible flow....