Loading...
Search for: subwavelength-resolution
0.005 seconds

    Tunable wide-band graphene plasmonic nano-color-sorter: Application in scanning near-field optical microscopy

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 2 , 2019 , Pages 435-442 ; 07403224 (ISSN) Heydarian, H ; Yazdanfar, P ; Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    Tunability of the Fermi level of graphene is exploited to implement a plasmonic nano-color-sorter for scanning near-field optical microscope (SNOM) applications capable of handling large tip sample couplings. Nano-color-sorting has been used in SNOM through creating multiple spatially separated hot spots for different incident wavelengths. We show that in the presence of high-refractive-index samples an unwanted redshift in the spectral response of the dual-color probe occurs. This limitation can be compensated for using graphene and adjusting its chemical potential to obtain a blueshift in probe spectral response. The Method of Moments analysis technique is employed to engineer the probe... 

    Oriented hyperlens based on passivated porous graphene phases for sub-diffraction visible imaging

    , Article Optical Materials Express ; Volume 11, Issue 9 , 2021 , Pages 2839-2853 ; 21593930 (ISSN) Sadeghi, M. N ; Yazdanfar, P ; Rashidian, B ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    The performance of conventional imaging lenses, relying on the phase transformation of propagating waves, is impairing due to the aberration and diffraction limits. For imaging beyond the diffraction limit, different superlens designs have been proposed. Although subdiffraction resolution imaging in the near field has been realized by the superlenses with negative refractive index, magnification of the subwavelength objects into the far field has not been fulfilled. Imaging using “hyperlens” is promising to overcome the energy spreading associated with diffraction, by utilizing negative permittivity parallel to the optical axis, and positive permittivity perpendicular to it. Among various...