Loading...
Search for: sulfide-minerals
0.005 seconds

    Copper recovery from chalcopyrite concentrate by an indigenous acidithiobacillus ferrooxidans in an air-lift bioreactor

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 25, Issue 3 , 2006 , Pages 21-26 ; 10219986 (ISSN) Mousavi, S. M ; Vossoughi, M ; Yaghmaei, S ; Jafari, A ; Sharif University of Technology
    2006
    Abstract
    In this study, effects of solid concentration, temperature, and initial Fe2+ concentration on bioleaching of sulfide mineral (chalcopyrite) obtained from Sarcheshmeh Copper Mine in the region of Kerman located in the south of Iran were investigated. A mesophilic iron oxidizing bacterium, Acidithiobacillus ferrooxidans has been isolated from a typical chalcopyrite copper concentrate of the mentioned mine. Bioleaching experiments were carried out in two batch air-lift bioreactors with recycling stream. One reactor contained 2 liters of medium and 10% (v/v) inoculum while in the other reactor, control bioleaching tests were carried out with sterilized concentrate without inoculum by the... 

    Bioleaching of low-grade sphalerite using a column reactor

    , Article Hydrometallurgy ; Volume 82, Issue 1-2 , 2006 , Pages 75-82 ; 0304386X (ISSN) Mousavi, S. M ; Jafari, A ; Yaghmaei, S ; Vossoughi, M ; Roostaazad, R ; Sharif University of Technology
    2006
    Abstract
    The effects of several variables on zinc recovery in column bioleaching have been investigated. The ore contained sphalerite and pyrite as the main sulfide minerals and chalcopyrite and galena as minor minerals. Tests were carried out using a bench-scale column leach reactor which was inoculated with mesophilic (Acidithiobacillus ferrooxidans) and thermophilic (Sulfobacillus) iron oxidizing bacteria; initially isolated from the Sarcheshmeh chalcopyrite concentrate (Kerman, Iran) and Kooshk sphalerite concentrate (Yazd, Iran), respectively. In the inoculated column, jarosite and elemental sulfur were formed. The leaching rate of sphalerite tended to increase with dissolved ferric ion... 

    LiClO4 • 3H2O promoted highly regioselective ring-opening of epoxides with thiols under neutral conditions

    , Article Catalysis Communications ; Volume 7, Issue 4 , 2006 , Pages 224-227 ; 15667367 (ISSN) Azizi, N ; Saidi, M. R ; Sharif University of Technology
    2006
    Abstract
    A simple, rapid, atom economy and highly efficient procedure has been developed for thiolysis of epoxides by aromatic and aliphatic thiols under solvent-free conditions. A high regioselectivity in favor of nucleophilic attack at the benzylic carbon atom of aromatic epoxides, such as styrene oxide, is observed. However, aliphatic unsymmetrical alkenyl oxides undergo selective nucleophilic attack at the sterically less hindered carbon atom. A variety of β-hydroxy sulfides were obtained in short reaction time and excellent yields with nearly complete regioselectivity. © 2005 Elsevier B.V. All rights reserved  

    Leaching kinetics of stibnite in sodium hydroxide solution

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 27, Issue 2 , February , 2014 , Pages 325-332 ; SSN: 10252495 Dodangeh, A ; Halali, M ; Hakim, M ; Bakhshandeh, M. R ; Sharif University of Technology
    Abstract
    The leaching kinetics of stibnite in basic solution has been investigated. Spherical pellets of antimony sulphide were dissolved in 1 molar sodium hydroxide solutions at different temperatures. It was found that the shrinking core with ash layer model could satisfactorily explain the dissolution process. Using this model, it was found that initially the rate controlling step was a chemical reaction with activation energy of 10.2 kJ/mol. As the ash layer built up, diffusion through the ash layer became the rate controlling step. The activation energy for this step was found to be 33.4 kJ/mol. It was also observed that smaller particle size, larger solid to liquid ratio, and higher NaOH... 

    Zinc extraction from Iranian low-grade complex zinc-lead ore by two native microorganisms: Acidithiobacillus ferrooxidans and Sulfobacillus

    , Article International Journal of Mineral Processing ; Volume 80, Issue 2-4 , 2006 , Pages 238-243 ; 03017516 (ISSN) Mousavi, S. M ; Yaghmaei, S ; Vossoughi, M ; Jafari, A ; Roostaazad, R ; Sharif University of Technology
    2006
    Abstract
    A mesophilic iron oxidizing bacterium, Acidithiobacillus ferrooxidans, has been isolated (33 °C) from a typical, chalcopyrite concentrate of the Sarcheshmeh copper mine in the region of Kerman located in the south of Iran. In addition, a thermophilic iron oxidizing bacterium, Sulfobacillus, has been isolated (60 °C) from the sphalerite concentrate of Kooshk lead and zinc mine near the city of Yazd in the center point of Iran. Variation of pH, ferrous and ferric concentration on time and effects of some factors such as temperature, cell growth, initial ferrous concentration and pH on bioleaching of low-grade complex zinc-lead ore were investigated. The results obtained from bioleaching... 

    New insight into H2S sensing mechanism of continuous SnO2-CuO bilayer thin film: A theoretical macroscopic approach

    , Article Journal of Physical Chemistry C ; Volume 120, Issue 14 , 2016 , Pages 7678-7684 ; 19327447 (ISSN) Boroun, Z ; Ghorbani, M ; Moosavi, A ; Mohammadpour, R ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    SnO2-CuO is one the most promising systems for detection of detrimental H2S gas. Although previous experimental research has suggested a sulfidation reaction to explain selectivity toward H2S, little is known about the origin of change of electrical response of this system by changing the H2S gas concentration. In this study the relation between sensing response of continuous SnO2-CuO bilayer thin film and H2S gas concentration is computed based on changeability of chemical composition of covellite CuxS. For this purpose, chemical activity of sulfur as a function of atomic fraction in covellite copper sulfide is estimated using Gibbs energies of formation and chemical thermodynamics. By... 

    Origin of working temperature in H2S sensing process of SnO2-CuO thin bilayer: A theoretical macroscopic approach

    , Article Sensors and Actuators, B: Chemical ; Volume 252 , 2017 , Pages 944-950 ; 09254005 (ISSN) Boroun, Z ; Ghorbani, M ; Mohammadpour, R ; Moosavi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Resistive sensors composed of SnO2 and CuO, are known to be highly efficient in detection of detrimental H2S gas in terms of sensitivity, selectivity and speed. Recently, dependency of electrical response of the sensor toward H2S gas concentration has been related to the selective mechanism (formation of CuS) by a theoretical model. Another important factor in design of gas sensors is the working temperature which so far has not been explicitly explained for H2S sensing process of SnO2-CuO system. In present study, origin of this temperature for SnO2-CuO thin bilayer based on the selective mechanism has been theoretically interpreted. For this purpose, Poisson, Laplace and continuity... 

    Solution synthesis of CuSbS2 nanocrystals: a new approach to control shape and size

    , Article Journal of Alloys and Compounds ; Volume 736 , 2018 , Pages 190-201 ; 09258388 (ISSN) Moosakhani, S ; Sabbagh Alvani, A. A ; Mohammadpour, R ; Ge, Y ; Hannula, S. P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Chalcostibite copper antimony sulfide (CuSbS2) micro- and nanoparticles with a different shape and size have been prepared by a new approach to hot injection route. In this method, sulfur in oleylamine (OLA) is employed as a sulfonating agent providing a simple route to control the shape and size of the particles, which enables the optimization of CuSbS2 for a variety of applications. The sulfur to metallic precursor ratio appears to be one of the most effective parameters along with the temperature and time for controlling the size and morphology of the particles. The growth mechanism study shows in addition to the CuSbS2 phase the presence of not previously observed intermediate phases... 

    Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor

    , Article Hydrometallurgy ; Volume 99, Issue 3-4 , 2009 , Pages 131-136 ; 0304386X (ISSN) Soleimani, M ; Hosseini, S ; Roostaazad, R ; Petersen, J ; Mousavi, M ; Kazemi Vasiri, A ; Sharif University of Technology
    2009
    Abstract
    The use of a draft tube fluidized bed bioreactor (DTFBB) has been successfully demonstrated for the bioleaching of a chalcopyrite concentrate (Mousavi, et. al., 2005). In the present paper this technique was used for the bioleaching of zinc from a sphalerite bearing low-grade ore. A strain of the thermophilic bacterium, Sulfobacillus, has been isolated from the Kooshk lead and zinc mine near the city of Yazd (Iran) and is tested at temperatures 47 °C-72 °C. This is compared to leaching with a strain of the mesophile Acidithiobacillus ferrooxidans, which has been adapted to the high levels of zinc and the presence of the low-grade ore, and which was tested at temperatures 18 °C-42 °C. The... 

    Hybrid supercapacitors constructed from double-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures

    , Article Journal of Colloid and Interface Science ; 2020 Shahi, M ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Evolution of renewable energies in the era of the modernized world has been strongly tied up to the incessant development of high-performance energy storage systems benefiting from both high energy and power densities. In the present work, binder-free positive electrodes are fabricated via a facile electrochemical deposition route in which copper oxide nanorods (CuO NRs) directly grown onto the copper foam (CF) are decorated with bimetallic cobalt-zinc sulfide nanoarrays (Co-Zn-S NAs). The fabricated Co-Zn-S@CuO-CFs represent promising specific capacity of 317.03 C.g−1 at 1.76 A.g−1, along with superior cyclic stability (113% retention after 4500 cycles). Negative electrodes were further... 

    Hybrid supercapacitors constructed from double-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures

    , Article Journal of Colloid and Interface Science ; Volume 585 , 2021 , Pages 750-763 ; 00219797 (ISSN) Shahi, M ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Evolution of renewable energies in the era of the modernized world has been strongly tied up to the incessant development of high-performance energy storage systems benefiting from both high energy and power densities. In the present work, binder-free positive electrodes are fabricated via a facile electrochemical deposition route in which copper oxide nanorods (CuO NRs) directly grown onto the copper foam (CF) are decorated with bimetallic cobalt-zinc sulfide nanoarrays (Co-Zn-S NAs). The fabricated Co-Zn-S@CuO-CFs represent promising specific capacity of 317.03 C.g−1 at 1.76 A.g−1, along with superior cyclic stability (113% retention after 4500 cycles). Negative electrodes were further... 

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or... 

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or...