Loading...
Search for: superconvergent-patch-recovery-methods
0.006 seconds

    Three-dimensional data transfer operators in plasticity using SPR technique with C0, C1 and C2 continuity

    , Article Scientia Iranica ; Volume 15, Issue 5 , 2008 , Pages 554-567 ; 10263098 (ISSN) Khoei, A. R ; Gharehbaghi, S. A ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    In this paper, the data transfer operators are developed in three-dimensional elasto-plasticity using the Superconvergent Patch Recovery (SPR) method. The transfer operators are defined for mapping of the state and internal variables between different meshes. The internal variables are transferred from Gauss points of old mesh to the nodal points. The variables are then transferred from the nodal points of old mesh to the nodal points of new mesh. Finally, the values are computed at the Gauss points of new mesh using their values at the nodal points. Aspects of the transfer operators are presented in a three-dimensional superconvergent path recovery technique, based on C0, C1 and C2... 

    Three-dimensional data transfer operators in large plasticity deformations using modified-SPR technique

    , Article Applied Mathematical Modelling ; Volume 33, Issue 7 , 2009 , Pages 3269-3285 ; 0307904X (ISSN) Khoei, A. R ; Gharehbaghi, S. A ; Sharif University of Technology
    2009
    Abstract
    In this paper, the data transfer operators are developed in 3D large plasticity deformations using superconvergent patch recovery (SPR) method. The history-dependent nature of plasticity problems necessitates the transfer of all relevant variables from the old mesh to new one, which is performed in three main stages. In the first step, the history-dependent internal variables are transferred from the Gauss points of old mesh to nodal points. The variables are then transferred from nodal points of old mesh to nodal points of new mesh. Finally, the values are computed at the Gauss points of new mesh using their values at nodal points. As the solution procedure, in general, cannot be... 

    3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method

    , Article Engineering Fracture Mechanics ; Volume 76, Issue 11 , 2009 , Pages 1703-1728 ; 00137944 (ISSN) Moslemi, H ; Khoei, A. R ; Sharif University of Technology
    2009
    Abstract
    In this paper, an adaptive finite element analysis is presented for 3D modeling of non-planar curved crack growth. The fracture mechanical evaluation is performed based on a general technique for non-planar curved cracks. The Schollmann's crack kinking criterion is used for the process of crack propagation in 3D problems. The Zienkiewicz-Zhu error estimator is employed in conjunction with a weighted SPR technique at each patch to improve the accuracy of error estimation. Applying the proposed technique to 3D non-planar curved crack growth problems shows significant improvements particularly at the boundaries and near crack tip regions. Several numerical examples are presented to illustrate...