Loading...
Search for: superhydrophobic-materials
0.006 seconds

    Reduced graphene oxide–melamine formaldehyde as a highly efficient platform for needle trap microextraction of volatile organic compounds

    , Article Microchemical Journal ; Volume 157 , 2020 Dorabadi Zare, F ; Allahdadlalouni, M ; Baktash, M. Y ; Bagheri, H ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    A superhydrophobic extractive phase was prepared and packed in a needle trap microextraction device for extraction of volatile organic compounds, followed by their determination by gas chromatography. The superhydrophobic phase was prepared by surface modification of melamine formaldehyde (MF) sponge embedded by reduced graphene oxide (rGO). The overall properties of the modified MF along with its high sorption capacity and low cost fabrication were indicative of its feasibility to be highly suitable for extraction of organic pollutants. The determined water contact angle (>150o) from the surface of melamine formaldehyde–reduced graphene oxide (MF–rGO) revealed its high affinity toward... 

    A superhydrophobic silica aerogel with high surface area for needle trap microextraction of chlorobenzenes

    , Article Microchimica Acta ; Volume 184, Issue 7 , 2017 , Pages 2151-2156 ; 00263672 (ISSN) Baktash, M. Y ; Bagheri, H ; Sharif University of Technology
    Springer-Verlag Wien  2017
    Abstract
    The authors have synthesized a superhydrophobic silica aerogel by using a sol-gel technique. The material is shown to be an efficient sorbent for needle trap microextraction of chlorobenzenes. Hydrophobicity affects the performance of the sorbent as shown by altering the ratio between tetraethylorthosilicate (TEOS) and methyltrimethoxysilane when synthesizing the sorbent. The observed contact angle (which is >150°) underpins the superhydrophobic properties of the aerogel. The microstructure of the sorbent was investigated by BET adsorption, revealing a surface area above 1000 m2 g−1. The sorbent was applied to needle trap extraction of chlorobenzenes from aqueous samples, and their... 

    Electrospun superhydrophobic polystyrene hollow fiber as a probe for liquid–liquid microextraction with gas chromatography-mass spectrometry

    , Article Journal of Separation Science ; Volume 39, Issue 19 , 2016 , Pages 3782-3788 ; 16159306 (ISSN) Bagheri, H ; Baktash, M. Y ; Jahandar, K ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    A superhydrophobic polystyrene hollow fiber was electrospun around a copper spring collector. This approach led to the construction of a hollow fiber membrane, and the copper spring acted as a scaffold. The characteristic properties of the hollow fiber were studied by scanning electron microscopy. The membrane was used as a probe to transfer the extracting solvent from aquatic media to a gas chromatograph. After performing the liquid–liquid microextraction procedure on 10 mL of water sample by octanol, the whole solution was passed through the prepared polystyrene hollow fiber. Propanol, containing 2 mg/L lindane as the internal standard, was used for desorption and an aliquot of 2 μL of the... 

    A single–step synthesized supehydrophobic melamine formaldehyde foam for trace determination of volatile organic pollutants

    , Article Journal of Chromatography A ; Volume 1525 , 2017 , Pages 10-16 ; 00219673 (ISSN) Bagheri, H ; Zeinali, S ; Baktash, M. Y ; Sharif University of Technology
    Abstract
    Superhydrophobic materials have attracted many attentions in recent years while their application in sample preparation remained almost intact. In this project, a rough surface of melamine formaldehyde foam was silanized by chemical deposition of trichloromethylsilane to form a highly porous and superhydrophobic material, presumably a suitable medium for extracting non–polar compounds such as benzene and its methyl derivatives. The prepared sorbent was packed in a needle for the headspace needle–trap microextraction of benzene, toluene, ethylbenzene and xylenes (BTEX). Major parameters associated with the extraction/desorption processes were considered for optimization. Under the optimized... 

    Implementing a superhydrophobic substrate in immersed solvent–supported microextraction as a novel strategy for determination of organic pollutants in water samples

    , Article Ecotoxicology and Environmental Safety ; Volume 163 , 2018 , Pages 104-110 ; 01476513 (ISSN) Baktash, M. Y ; Asem Yousefi, A ; Bagheri, H ; Sharif University of Technology
    Academic Press  2018
    Abstract
    In this research, a new approach for extraction and determination of polycyclic aromatic hydrocarbons from sea and rain water samples was developed by implementing a superhydrophobic substrate and consuming the least amount of solvent. This version of solvent–supported microextraction enabled us to perform the procedure in the immersion mode with the slightest troubles arising from water leakage into the gas chromatography. The superhydrophobic property leads to the fixation of extracting solvent on the substrate surface during water sampling. To prepare a superhydrophobic substrate, a piece of melamine foam was coated by tannic acid and silica nanoparticles using methyltrimethoxysilane and...