Search for: superparamagnetic-iron-oxide-nanoparticle
0.006 seconds
Total 30 records

    Preparation and biological evaluation of [67 Ga]-labeled-superparamagnetic iron oxide nanoparticles in normal rats

    , Article Journal of Nuclear Science and Technology ; Volume 97, Issue 1 , September , 2009 , Pages 51–56 Jalilian, A. R ; Panahifar, A ; Mahmoudi, M. (Morteza) ; Akhlaghi, M. (Mahdi) ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Gallium-67 labeled superparamagnetic iron oxide nanoparticles were prepared and evaluated for their altered biodistribution in normal rats. Superparamagnetic iron oxide nanoparticles with narrow size distribution were synthesized by co-precipitation technique using ferric and ferrous salts at molar ratio Fe3+/Fe2+=2:1 followed by structure identification using XRD, thermo gravimetric analysis , differential scanning calorimetric , vibrating sample magnetometer, high-resolution scanning electron microscopy,transmission electron microscopy and fourier transform infrared absorption techniques. In order to trace superparamagnetic iron oxide nanoparticles bio-distribution, the radiolabeled iron... 

    Preparation and biological evaluation of [67Ga]-labeled- superparamagnetic nanoparticles in normal rats

    , Article Radiochimica Acta ; Volume 97, Issue 1 , 2009 , Pages 51-56 ; 00338230 (ISSN) Jalilian, A. R ; Panahifar, A ; Mahmoudi, M ; Akhlaghi, M ; Simchi, A ; Sharif University of Technology
    R. Oldenbourg Verlag GmbH  2009
    Gallium-67 labeled superparamagnetic iron oxide nanoparticles ([ 67Ga]-SPION were prepared and evaluated for their altered biodistribution in normal rats. Superparamagnetic iron oxide nanoparticles (SPION) with narrow size distribution were synthesized by a co-precipitation technique using ferrous salts at Fe3+/Fe2+ = 2 molar ratio followed by structure identification using XRD, TGA, DSC, VSM, HRSEM, TEM and FT-IR techniques (≈ 5 nm diameter). In order to trace SPION bio-distribution, the radiolabeled iron oxide nanoparticles were prepared using 67Ga with a high labeling efficiency (over 96%, RTLC method) and they also showed an excellent stability at room temperature for at least 4 d. The... 

    Surface Modification of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs)for Cell Separation

    , M.Sc. Thesis Sharif University of Technology Shirzadeh, Ghazale (Author) ; Maddah Hoseini, Hamid Reza (Supervisor)
    The aim of this project is the surface modification of super para magnetic iron oxide (SPIONs), leading to oriented covalent bonding of antibody(AB) to these nanoparticles (NPs) and improve the efficiency of cell separation at MACS columns. For this purpose, SPIONs synthesized by co-precipitation method, and the stability of colloidal NPs then was provided by coating with Dextran . We used TGA to measure weight percentage of dextran. Some properties like particle size, hydrodynamic diameter, presence of coating and superparamagnetic properties were characterized by XRD (16 nm), FTIR, DLS (73 nm), TEM (20nm) and VSM (≈76/78 emu/g) method, respectively. Then we tried to immobilize AB on NPs... 

    Determination of Protein Absorption Profile at the Surface of Biocompatible Superparamagnetic Iron Oxide Nanoparticles using Gel Electrophoresis

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Forough (Author) ; Hormozi Nezhad, Mohammad Reza (Supervisor) ; Mahmoudi, Morteza (Supervisor)
    Superparamagnetic Iron Oxide NPs (SPIONs) because of their multi-task capabilities (e.g. magnetic labeling, cell isolation, hyperthermiaand controlled drug release) have been recognized as one of the most promising NPs for theranosis applications.When NPs come in contact with a biological medium, the surfaces of them are covered by biomolecules (e.g., proteins, natural organic materials, and enzymes). Therefore, what a biological entity, such as cells, tissues, and organs, sees when interacting with NPs is different original pristine surface of the NPs and actually is hard protein corona. Shape of NPs has a great impact on proteins adsorb onto its surface and consequently on the way that... 

    Cell life cycle effects of bare and coated superparamagnetic iron oxide nanoparticles

    , Article Toxic Effects of Nanomaterials ; 2012 , Pages 53-66 ; 9781608054213 (ISBN) Mahmoudi, M ; Laurent, S ; Journeay, W. S ; Sharif University of Technology
    Due to the hopeful potential of nanoparticles in medicine, they have attracted much attention for various applications such as targeted drug/gene delivery, separation or imaging. Interaction of NPs with the biological environment can lead to a wide range of cellular responses. In order to have safe NPs for biomedical applications, the current biocompatibility researches are particularly focused on the severe toxic mechanisms which cause cells death. These mechanisms are apoptosis, autophagy and necrosis, which can also be intricately linked with the cell-life cycle, as there are various check-points and controls in a cell's life cycle to ensure appropriate division processes. Mechanisms by... 

    Preparation and Evaluation of Doxorubicin-loaded Fe3O4\Chitosan Magnetic Nanocomposite for Drug Delivery System in Cancer Therapy

    , M.Sc. Thesis Sharif University of Technology Tajeri, Razieh (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Recent drug delivery strategies have attempted to maximize the concentration of chemotherapeutic molecules into the tumors, while minimizing their systemic distribution. Doxorubicin has been widely used for a variety of cancers, successfully producing regression in acute leukaemia, lymphomas, soft-tissue and osteogenic sarcomas, paediatric malignancies and adult solid tumours, in particular breast and lung carcinomas. Common adverse effects of doxorubicin include hair loss, myelosuppression, nausea and vomiting, oral mucositis, oesophagitis, diarrhoea, skin reactions and serious reactions include hypersensitivity reactions, radiation recall, heart damage and liver dysfunction. Chitosan has... 

    Synthesis and Characterization of Dextran Based Magnetic Nanogels as a Gene Delivery Vector and Investigating its Gene Therapy Efficiency

    , M.Sc. Thesis Sharif University of Technology Azadpour, Behnam (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Arefian, Ehsan (Supervisor)
    The use of magnetic nanoparticles modified with proper surface agent and the ability of controlling by magnetic field, that can induce colloidal stability, is considered as a vector to transfer DNA plasmid, or pDNA in short, in the field of gene therapy. In thiss research, pH-responsive dextran-based magnetic nanogels (dextMNGs) were synthesized via inverse mini-emulsion method. Fourier transformation infrared spectroscopy (FTIR) showed that magnetite nanoparticles (MNPs) were successfully modified with arginine and had amine terminals. FTIR, also, proved that aldehyded dextran was crosslinked by arginine modified magnetite nanoparticles (RMNPs) via pH sensitive imine bonds. X-ray... 

    Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 116 , April , 2014 , pp. 49-54 ; ISSN: 09277765 Pourjavadi, A ; Hosseini, S. H ; Alizadeh, M ; Bennett, C ; Sharif University of Technology
    A novel magnetic nanocarrier with long spacer length and high colloidal stability has been prepared for effective delivery of doxorubicin (DOX). First, poly(amidoamine) (PAMAM) dendrimer was grown up onto the surface of superparamagnetic iron oxide nanoparticles to increase the loading amount of amine groups. Then, terminal amine groups were functionalized by polyethylene glycol dimethylester to increase the spacer length. Then anticancer drug DOX was covalently attached onto the system by hydrazone bond to forms a pH-sensitive nanocarrier. This system is designed to combine the advantage of magnetic targeting, high drug loading capacity, and controlled release  

    Evaluation of radiogallium-labeled, folate-embedded superparamagnetic nanoparticles in fibrosarcoma-bearing mice

    , Article Journal of Cancer Research and Therapeutics ; Volume 8, Issue 2 , 2012 , Pages 204-208 ; 09731482 (ISSN) Hosseini Salekdeh, S. L ; Jalilian, A.R ; Yousefnia, H ; Shafaii, K ; Pouladian, M ; Mahmoudi, M ; Sharif University of Technology
    Context: Elevated expression of the folate receptor (FR) occurs in many human malignancies. Thus, folate targeting is widely utilized in drug delivery purposes specially using nano-radioactive agents. Aims: In this work, we report production and biological evaluation of gallium-67 labeled superparamagnetic iron oxide nanoparticles, embedded by folic acid (67 Ga-SPION-folate) complex especially in tumor-bearing mice for tumor imaging studies. Settings and Design: The structure of SPION-folate was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and foureir transform infrared spectroscopy (FT-IR) analyses. The radiolabeled SPION-folate formation was confirmed by... 

    A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 75, Issue 1 , 2010 , Pages 300-309 ; 09277765 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Shokrgozar, M. A ; Milani, A. S ; Häfeli, U. O ; Stroeve, P ; Sharif University of Technology
    Superparamagnetic iron oxide nanoparticles (SPIONs) are increasingly used in medical applications, such as targeting delivery and imaging. In the future, patients are more likely to be exposed to pharmaceutical products containing such particles. The study of toxicity of SPIONs has become of great importance in recent years, although the published data in this arena is limited. The aim of the present work is to investigate the cytotoxicity of SPIONs and the effect of the particles on the cell medium components. For this purpose, uncoated and polyvinyl alcohol (PVA) coated SPIONs with narrow size distribution were synthesized via a well-known coprecipitation method. The mouse fibroblast cell... 

    کلیدواژه های تکراریCurcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats

    , Article Biomedicine and Pharmacotherapy ; Volume 108 , 2018 , Pages 1244-1252 ; 07533322 (ISSN) Naserzadeh, P ; Ashrafi Hafez, A ; Abdorahim, M ; Abdollahifar, M. A ; Shabani, R ; Peirovi, H ; Simchi, A ; Ashtari, K ; Sharif University of Technology
    Background: The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. Methods: We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation,... 

    Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 19 , 2009 , Pages 8124-8131 ; 19327447 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Hafeli, U. O ; Sharif University of Technology
    Superparamagnetic iron oxide nanoparticles with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection, and cell/protein separation. To enhance the applicability of magnetic nanoparticles, two main problems must be overcome. First, as the drug coats the particle surface, a significant portion of it is quickly released upon injection (burst effect). Therefore, only small amounts of the drug reach the specific site after, for example, magnetic drug targeting. Second, once the surface-derivatized nanoparticles are inside the cells, the coating is likely digested, leaving the bare particles... 

    Mechanistic understanding of the interactions between nano-objects with different surface properties and α-synuclein

    , Article ACS Nano ; Volume 13, Issue 3 , 2019 , Pages 3243-3256 ; 19360851 (ISSN) Mohammad Beigi, H ; Hosseini, A ; Adeli, M ; Ejtehadi, M. R ; Christiansen, G ; Sahin, C ; Tu, Z ; Tavakol, M ; Dilmaghani Marand, A ; Nabipour, I ; Farzadfar, F ; Otzen, D. E ; Mahmoudi, M ; Hajipour, M. J ; Sharif University of Technology
    American Chemical Society  2019
    Aggregation of the natively unfolded protein α-synuclein (α-syn) is key to the development of Parkinson's disease (PD). Some nanoparticles (NPs) can inhibit this process and in turn be used for treatment of PD. Using simulation strategies, we show here that α-syn self-assembly is electrostatically driven. Dimerization by head-to-head monomer contact is triggered by dipole-dipole interactions and subsequently stabilized by van der Waals interactions and hydrogen bonds. Therefore, we hypothesized that charged nano-objects could interfere with this process and thus prevent α-syn fibrillation. In our simulations, positively and negatively charged graphene sheets or superparamagnetic iron oxide... 

    Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma

    , Article Biomaterials Research ; Volume 24, Issue 1 , 2020 Ghasemi Goorbandi, R ; Mohammadi, M. R ; Malekzadeh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Background: Genistein (C15H10O5) is a soy isoflavone with anti-cancer properties such as inhibition of cell growth, proliferation and tumor invasion, but effective dosage against hematopoietic malignant cells was not in non-toxic range. This property cause to impede its usage as chemotherapeutic agent. Therefore, this hypothesis raised that synthesizing biocompatible nanoparticle could assist to prevail this struggle. Methods: Genistein covalently attached on Fe3O4 nanoparticles decorated with carboxymethylated chitosan to fabricate Fe3O4-CMC-genistein in alkaline circumstance. This obtained nanoparticles were evaluated by TEM, DLS, FTIR, XRD and VSM and its anti-cancer effect by growth rate... 

    Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation

    , Article New Journal of Chemistry ; Volume 44, Issue 17 , 2020 , Pages 6947-6957 Paryab, A ; Madaah Hosseini, H. R ; Abedini, F ; Dabbagh, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    In the present study, bubble-driven magnesium-based micromotors were fabricated through a shading method, and the potential of magnetic guidance of magnesium-based Janus micro/nanomotors through functionalization with superparamagnetic iron oxide nanoparticles (SPIONs) was investigated for the first time. SPIONs had physical electrostatic attraction with the positively charged magnesium spheres due to negative charges on their surfaces. It was also found that upon applying a field gradient, the micromotors’ velocity increased by 13% unlike other magnetically navigated spherical magnesium-based micromotors which only show a change in direction. In this work the cytotoxicity of the moving... 

    Cell toxicity of superparamagnetic iron oxide nanoparticles

    , Article Journal of Colloid and Interface Science ; Volume 336, Issue 2 , 2009 , Pages 510-518 ; 00219797 (ISSN) Mahmoudi, M ; Simchi, A ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation and low toxicity effects. In this work, superparamagnetic iron oxide nanoparticles (SPIONs) with different size, shape and saturation magnetization levels were synthesized via a co-precipitation technique using ferrous salts with a Fe3+/Fe2+ mole ratio equal to 2. A parametric study is conducted, based on a uniform design-of-experiments methodology and a critical polymer/iron mass ratio (r-ratio) for obtaining SPION with narrow size distribution, suitable magnetic saturation, and optimum biocompatibility is identified. Polyvinyl alcohol (PVA) has been... 

    Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles

    , Article International Journal of Pharmaceutics ; Volume 439, Issue 1-2 , 2012 , Pages 28-40 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Seyed Reyhani, S. M ; Shokrgozar, M. A ; Oghabian, M. A ; Ahmadi, R ; Sharif University of Technology
    To efficiently enhance the contrast obtaining from magnetic resonance imaging (MRI), pharmaceutical grade colloidal dispersions of PEG coated iron-based nanoparticles were prepared and compared to conventional pure iron oxide contrast agent. In this study, we synthesized ∼14 nm iron nanoparticles via NaBH4 reduction of iron(III) chloride in an aqueous medium. The resulting nanoparticles were further oxidized by two different methods via (CH3)3NO oxygen transferring agent and exposure to oxygen flow. XRD and electron microscopy analyses confirmed the formation of a second layer on the surface of α-Fe core. As magnetic measurements and Mössbauer spectra of 4-months post prepared nanoparticles... 

    The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent

    , Article International Journal of Pharmaceutics ; Volume 433, Issue 1-2 , 2012 , Pages 129-141 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Shokrgozar, M. A ; Ahmadi, R ; Oghabian, M. A ; Sharif University of Technology
    Superparamganetic iron oxide-based contrast agents in magnetic resonance imaging (MRI) have offered new possibility for early detection of lymph nodes and their metastases. According to important role of nanoparticle size in biodistribution, magnetite nanoparticles coated with different polyethylene glycol (PEG) concentrations up to 10/1 PEG/iron oxide weight ratio in an ex situ manner. To predict the PEG-coated nanoparticle behavior in biological media, such as blood stream or tissue, colloidal stability evaluation was performed to estimate the coating endurance in different conditions. Accordingly, optical absorbance measurements were conducted in solutions with different values of pH and... 

    Effect of pH, citrate treatment and silane-coupling agent concentration on the magnetic, structural and surface properties of functionalized silica-coated iron oxide nanocomposite particles

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 44, Issue 3 , December , 2011 , Pages 618-627 ; 13869477 (ISSN) Mohammad Beigi, H ; Yaghmaei, S ; Roostaazad, R ; Bardania, H ; Arpanaei, A ; Sharif University of Technology
    Superparamagnetic iron oxide nanoparticles were synthesized by coprecipitation of iron chloride salts at various pH values (9, 10, 11 and12) that were adjusted using an ammonia solution. Increasing the pH from 9 to 12 led to decreases in the size of iron oxide nanoparticles from 7.9±1.4 to 5±0.6 nm and the saturation magnetization (M s) from 82.73 to 67.14 emu/g, respectively, when analyzed with transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). X-ray diffraction patterns as well as M s values showed that magnetite is the dominantly synthesized phase in the examined pH values. Unmodified iron oxide nanoparticles were coated with silica via the hydrolysis and... 

    Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol)

    , Article Thin Solid Films ; Volume 518, Issue 15 , 2010 , Pages 4281-4289 ; 00406090 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Stroeve, P ; Sohrabi, A ; Sharif University of Technology
    Magnetite (Fe3O4) nanostructures with different morphologies including uniform nanoparticles, magnetic beads and nanorods were synthesized via a co-precipitation method. The synthesis process was performed at various temperatures in the presence of polyvinyl alcohol (PVA) at different concentrations. It is shown that small amounts of PVA act as a template in hot water (70 °C), leading to the oriented growth of Fe3O4 nanorods, which was confirmed by selected area electron diffraction. Individually coated magnetite nanoparticles and magnetic beads were formed at a relatively lower temperature of 30 °C in the folded polymer molecules due to the thermo-physical properties of PVA. When a moderate...