Loading...
Search for: support-surfaces
0.006 seconds

    Nonlinear free vibration of nanobeams with surface effects considerations

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 191-196 ; 9780791854846 (ISBN) Fallah, A ; Firoozbakhsh, K ; Kahrobaiyan, M. H ; Pasharavesh, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, simple analytical expressions are presented for geometrically non-linear vibration analysis of thin nanobeams with both simply supported and clamped boundary conditions. Gurtin-Murdoch surface elasticity together with Euler-Bernoulli beam theory is used to obtain the governing equations of motions of the nanobeam with surface effects consideration. The governing nonlinear partial differential equation is reduced to a single nonlinear ordinary differential equation using Galerkin technique. He's variational approach is employed to obtain analytical solution for the resulted nonlinear governing equation. The effects of different parameters such as vibration amplitude, boundary... 

    Covalent immobilization of cellulase using magnetic poly(ionic liquid) support: improvement of the enzyme activity and stability

    , Article Journal of Agricultural and Food Chemistry ; Volume 66, Issue 4 , 2018 , Pages 789-798 ; 00218561 (ISSN) Hosseini, H ; Hosseini, A ; Zohreh, N ; Yaghoubi, M ; Pourjavadi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    A magnetic nanocomposite was prepared by entrapment of Fe3O4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The...