Loading...
Search for: surface-plasmon-resonance
0.006 seconds
Total 86 records

    Optical detection of some hydrazine compounds based on the surface plasmon resonance band of silver nanoparticles

    , Article Spectroscopy Letters ; Volume 46, Issue 1 , 2013 , Pages 73-80 ; 00387010 (ISSN) Tashkhourian, J ; Hormozi Nezhad, M. R ; Fotovat, M ; Sharif University of Technology
    2013
    Abstract
    An indirect colorimetric method is presented for spectrophotometric determination of hydrazine, phenylhydrazine, and isoniazid. Reduction of silver ions to silver nanoparticles (AgNPs) by these analytes as active reducing agents in the presence of polyvinylpyrrolidone (PVP) and also cetyltrimethylammonium chloride (CTAC) as a stabilizer is the basis of the proposed method. The changes in plasmon absorbance of the AgNPs at λ = 415 nm in the presence of PVP were proportional to concentration of hydrazine, phenylhydrazine, and isoniazid in the ranges of 4.0-150.0 μM, 1.0-55.0 μM, and 2.0-30.0 μM, respectively, and the detection limit obtained was 0.79 μM. In the presence of CTAC, the linear... 

    Gold@Silver@Gold Core double-shell nanoparticles: synthesis and aggregation-enhanced two-photon photoluminescence evaluation

    , Article Plasmonics ; Volume 15, Issue 2 , 2020 , Pages 409-416 Daneshvar e Asl, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer  2020
    Abstract
    A facile, straightforward, and low-cost method is proposed to synthesize gold@silver@gold core double-shell nanoparticles. The technique is a seed-mediated growth protocol that contains four steps of (1) gold seed synthesis, (2) gold seed growth, (3) silver layer coating through silver salt reduction, and (4) gold layer deposition via gold precursor reduction. The prepared nanoparticles had a narrow size distribution and the average particle size of 28 ± 1 nm. Cysteine was introduced to the nanoparticles solution as a coupling agent to assemble nanoparticles. Aggregation-induced two-photon photoluminescence enhancement of three types assembled nanoparticles, i.e., gold@silver@gold,... 

    Plasmonic propagation modes of a structured two-dimensional conducting interface

    , Article Journal of Optics A: Pure and Applied Optics ; Volume 10, Issue 2 , 2008 ; 14644258 (ISSN) Zandi, H ; Khorasani, S ; Hosseini, A ; Mehrany, K ; Rashidian, B ; Adibi, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, we present a detailed analysis of a two-dimensional lossless and non-dispersive structured conducting interface, which is approximated by a two-dimensional ideal one-component plasma-like conducting sheet enclosed by two isotropic dielectrics. We present a Green's function formalism to analyze the propagation of surface plasmons and find new expressions. We also present analytical extensions of the approach to include loss, and discuss the results and applications of the theory. We study the symmetry properties of eigenmodes and show that the symmetries of the eigenmodes at high-symmetry points of the Brillouin zone are similar to those of the E-polarization eigenmodes of a... 

    Design of high-sensitivity surface plasmon resonance sensor based on nanostructured thin films for effective detection of DNA hybridization

    , Article Plasmonics ; Volume 17, Issue 4 , 2022 , Pages 1831-1841 ; 15571955 (ISSN) Ghayoor, R ; Zangenehzadeh, S ; Keshavarz, A ; Sharif University of Technology
    Springer  2022
    Abstract
    As developed countries’ ability to control infectious diseases increases, it has become clear that genetic diseases are a major cause of disability, death, and human tragedy. Coronavirus has recently spread throughout the world, and the capacity to detect low concentrations and virus changes can help to prevent the sickness from spreading further. In this paper, a surface plasmon resonance sensor based on nanostructured thin films and graphene as a 2D material has been designed with high sensitivity and accuracy to identify DNA-based infectious diseases such as SARS-CoV-2. The transfer matrix method assesses the effects of different structural factors, including nanolayer thickness on the... 

    Exploitation of n-gene of sars-cov-2 to develop a new rapid assay by ASOs@AuNPs

    , Article Analytical Chemistry ; Volume 94, Issue 39 , 2022 , Pages 13616-13622 ; 00032700 (ISSN) Borghei, Y. S ; Samadikhah, H. R ; Hosseinkhani, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    A naked-eye (equipment-free), label-free (cost-effective), and RNA extraction-free (to speed up) method for SARS-CoV-2 (as a case study of RNA viruses) detection is developed. Here, the DNA is being used as a template for in situ formation of anisotropic gold nanoparticles (AuNPs) without any chemical modification or DNA labeling. In this study, synthesized AuNPs for the direct detection of N-gene (nucleocapsid phosphoprotein) of SARS-CoV-2 are exploited. To this aim, antisense oligonucleotides (ASOs) with an extra poly guanine tail (G12) were designed. Thus, in the presence of its viral target RNA gene and ASOs@AuNPs-RNA hybridization, there was a red shift in its localized surface plasmon... 

    Photocatalytic activity of rutile/anatase TiO 2 nanorod/nanobranch thin film loaded with Au@Ag@Au core double shell nanoparticles

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 380 , 2019 ; 10106030 (ISSN) Daneshvar e Asl, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A seeding-growth approach was used to prepare Au@Ag@Au core double shell nanoparticles which were loaded on a rutile-nanorods/anatase-nanobranches thin film via the impregnation method. The thin film was synthesized on a fluorine-doped SnO 2 substrate via three stages of (i)TiCl 4 treatment, (ii)hydrothermal, and (iii)aqueous chemistry. The photocatalytic capability of the newly developed nanostructure was higher than P25 TiO 2 thin film by 40% under visible light and by 100% under UV light irradiation. Photogenerated charges separation at the junctions of rutile-nanorods and anatase-nanobranches along with localized surface plasmon resonance followed by the hot electron transfer from the... 

    Novel optical devices based on surface wave excitation at conducting interfaces

    , Article Semiconductor Science and Technology ; Volume 18, Issue 6 , 2003 , Pages 582-588 ; 02681242 (ISSN) Mehrany, K ; Khorasani, S ; Rashidian, B ; Sharif University of Technology
    2003
    Abstract
    In this paper, the excitation of surface waves in the presence of interface charges is discussed. Interface charges affect the dispersion of surface waves, and therefore they can be used in various applications such as optical modulators, switches, sensors and filters. These waves can be superior to surface plasmon waves since they are not lossy. The lossless property is satisfied in a limited range of millimetre waves to far infrared  

    Fabrication localized surface plasmon resonance sensor chip of gold nanoparticles and detection lipase-osmolytes interaction

    , Article Applied Surface Science ; Vol. 314, issue , 2014 , Pages 138-144 ; ISSN: 01694332 Ghodselahi, T ; Hoornam, S ; Vesaghi, M. A ; Ranjbar, B ; Azizi, A ; Mobasheri, H ; Sharif University of Technology
    Abstract
    Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H)... 

    Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 153 , 2016 , Pages 709-713 ; 13861425 (ISSN) Khodaveisi, J ; Haji Shabani, A. M ; Dadfarnia, S ; Rohani Moghadam, M. R ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier 
    Abstract
    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg2 +) in aqueous media. The method is based on the inhibitory effect of Hg2 + on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au3 + to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg2 +. Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL- 1. Limits... 

    A novel photometric glucose biosensor based on decolorizing of silver nanoparticles

    , Article Sensors and Actuators, B: Chemical ; Volume 158, Issue 1 , November , 2011 , Pages 185-189 ; 09254005 (ISSN) Tashkhourian, J ; Hormozi Nezhad, M. R ; Khodaveisi, J ; Dashti, R ; Sharif University of Technology
    2011
    Abstract
    A novel glucose biosensor based on chromophore (silver nanoparticles) decolorizing for the photometric determination of glucose was developed. Silver nanoparticles are directly synthesized in the sol-gel matrix by a one-step method based on the reduction of the inorganic precursor AgNO3 and were used for the preparation, characterization and calibration of a highly sensitive and cost-effective localized surface plasmon resonance-based glucose biosensor. In the presence of glucose oxidase (GOx) and due to the enzyme-substrate (glucose) reaction, H2O2 was produced and silver nanoparticles in the sol-gel glass have the ability for the decomposition of hydrogen peroxide. Due to the degradation... 

    Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 138 , March , 2015 , Pages 474-480 ; 13861425 (ISSN) Khodaveisi, J ; Dadfarnia, S ; Haji Shabani, A. M ; Rohani Moghadam, M ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Spectrophotometric analysis method based on the combination of the principal component analysis (PCA) with the feed-forward neural network (FFNN) and the radial basis function network (RBFN) was proposed for the simultaneous determination of paracetamol (PAC) and p-aminophenol (PAP). This technique relies on the difference between the kinetic rates of the reactions between analytes and silver nitrate as the oxidizing agent in the presence of polyvinylpyrrolidone (PVP) which is the stabilizer. The reactions are monitored at the analytical wavelength of 420 nm of the localized surface plasmon resonance (LSPR) band of the formed silver nanoparticles (Ag-NPs). Under the optimized conditions, the... 

    Pulsed electrodeposition of gold nanoparticles on fluorine-doped tin oxide glass and absorption-based surface plasmon resonance evaluation

    , Article Journal of Nano Research ; Volume 33 , 2015 , Pages 11-26 ; 16625250 (ISSN) Vahdatkhah, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Trans Tech Publications Ltd  2015
    Abstract
    Synthesis and immobilization of Au nanoparticles (AuNPs) was performed on transparent fluorine-doped tin oxide (FTO) substrate by pulse electrodeposition method. The method was cost effective, simple and capable of producing nanoparticles strongly attached to the substrate. Effects of several influencing factors such as duty cycle, pulse frequency, current density, solution concentration, deposition period and annealing procedure on the optical properties of AuNPs-FTO electrode were investigated. AuNPs-FTO electrodes were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-Vis absorption analysis. Controllability... 

    Noble metal nanoparticles in biosensors: Recent studies and applications

    , Article Nanotechnology Reviews ; Volume 6, Issue 3 , 2017 , Pages 301-329 ; 21919089 (ISSN) Malekzad, H ; Sahandi Zangabad, P ; Mirshekari, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2017
    Abstract
    The aim of this review is to cover advances in noble metal nanoparticle (MNP)-based biosensors and to outline the principles and main functions of MNPs in different classes of biosensors according to the transduction methods employed. The important biorecognition elements are enzymes, antibodies, aptamers, DNA sequences, and whole cells. The main readouts are electrochemical (amperometric and voltametric), optical (surface plasmon resonance, colorimetric, chemiluminescence, photoelectrochemical, etc.) and piezoelectric. MNPs have received attention for applications in biosensing due to their fascinating properties. These properties include a large surface area that enhances biorecognizers... 

    Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review

    , Article Biomedical Microdevices ; Volume 21, Issue 4 , 2019 ; 13872176 (ISSN) Ghasemi Toudeshkchoui, M ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity,... 

    Formation of gold nanoparticles in heat-treated reactive co-sputtered Au-SiO 2 thin films

    , Article Applied Surface Science ; Volume 254, Issue 1 SPEC. ISS , 2007 , Pages 286-290 ; 01694332 (ISSN) Sangpour, P ; Akhavan, O ; Moshfegh, A. Z ; Roozbehi, M ; Sharif University of Technology
    Elsevier  2007
    Abstract
    In this work, formation of gold nanoparticles in radio frequency (RF) reactive magnetron co-sputtered Au-SiO 2 thin films post annealed at different temperatures in Ar + H 2 atmosphere has been investigated. Optical, surface topography, chemical state and crystalline properties of the prepared films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD) techniques, respectively. Optical absorption spectrum of the Au-SiO 2 thin films annealed at 800 °C showed one surface plasmon resonance (SPR) absorption peak located at 520 nm relating to gold nanoparticles. According to XPS analysis, it was... 

    Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids

    , Article Applied Physics A: Materials Science and Processing ; Volume 88, Issue 2 , 2007 , Pages 415-419 ; 09478396 (ISSN) Tilaki, R. M ; Iraji Zad, A ; Mahdavi, M ; Sharif University of Technology
    2007
    Abstract
    Colloidal copper nanoparticles were prepared by pulsed Nd:YAG laser ablation in water and acetone. Size and optical properties of the nanoparticles were characterized by transmission electron microscopy and UV-visible spectrophotometry, respectively. The copper particles were rather spherical and their mean diameter in water was 30 nm, whereas in acetone much smaller particles were produced with an average diameter of 3 nm. Optical extinction immediately after the ablation showed surface plasmon resonance peaks at 626 and 575 nm for the colloidal copper in water and acetone, respectively. Time evaluation showed a blue shift of the optical extinction maximum, which is related to the change of... 

    Finite and boundary element methods for simulating optical properties of plasmonic nanostructures

    , Article Plasmonics ; Volume 17, Issue 3 , 2022 , Pages 1095-1106 ; 15571955 (ISSN) Amirjani, A ; Zamanpour Abyaneh, P ; Azaripoor Masouleh, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer  2022
    Abstract
    In this study, a numerical investigation was done on the optical properties of silver nanostructures using the boundary element method (BEM) and finite element method (FEM). The BEM simulation was done using a freely available code called MNBEM in MATLAB with minor modifications. The FEM simulation was done by Comsol Multiphysics, a commercial software package. Silver nanostructures in the sphere, rod, and triangle geometries and the presence of different polarization angles were compared between these two methods. According to the obtained results, the absorption cross-sections for both BEM and FEM were consistent with their actual optical properties. For instance, both longitudinal and... 

    Localized surface plasmon resonance sensor for simultaneous kinetic determination of peroxyacetic acid and hydrogen peroxide

    , Article Analytica Chimica Acta ; Volume 762 , 2013 , Pages 87-93 ; 00032670 (ISSN) Tashkhourian, J ; Hormozi Nezhad, M. R ; Khodaveisi, J ; Dashti, R ; Sharif University of Technology
    2013
    Abstract
    A new sensor for simultaneous determination of peroxyacetic acid and hydrogen peroxide using silver nanoparticles (Ag-NPs) as a chromogenic reagent is introduced. The silver nanoparticles have the catalytic ability for the decomposition of peroxyacetic acid and hydrogen peroxide; then the decomposition of them induces the degradation of silver nanoparticles. Hence, a remarkable change in the localized surface plasmon resonance absorbance strength could be observed. Spectra-kinetic approach and artificial neural network was applied for the simultaneous determination of peroxyacetic acid and hydrogen peroxide. Linear calibration graphs were obtained in the concentration range of (8.20×10-5 to... 

    CO gas sensor properties of Cu@CuO core-shell nanoparticles based on localized surface plasmon resonance

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 45 , 2011 , Pages 22126-22130 ; 19327447 (ISSN) Ghodselahi, T ; Zahrabi, H ; Saani, M. H ; Vesaghi, M. A ; Sharif University of Technology
    2011
    Abstract
    Hexagonal array of Cu@CuO core-shell nanoparticles (NPs) on the a-C:H thin film was prepared by codeposition of RF-sputtering and RF-PECVD. The trace of hexagonal NPs supperlattice was recognized by AFM image and XRD result. On the basis of localized surface plasmon resonance (LSPR) of core-shell NPs, the prepared array detected a low flow rate of CO gas at room temperature. XPS results indicate that the surface of Cu@CuO core-shell NPs have no chemical reaction with CO molecule. The physical absorption of CO molecule on the surface of Cu@CuO core-shell NPs increases the LSPR absorbance and causes a red shift in LSPR wavelength. These experimental results are in agreement with Mie theory... 

    Fabrication and characterization and biosensor application of gold nanoparticles on the carbon nanotubes

    , Article Applied Surface Science ; Volume 355 , November , 2015 , Pages 1175-1179 ; 01694332 (ISSN) Ghodselahi, T ; Aghababaie, N ; Mobasheri, H ; Zand Salimi, K ; Akbarzadeh Pasha, M ; Vesaghi, M. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Gold nanoparticles (Au NPs) were synthesized by co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target on the carbon nanotubes (CNTs). The CNTs were prepared by thermal chemical vapor deposition (TCVD) and Pd nanoparticles catalyst. TEM image shows that high-density and uniform distribution of Au NPs were grown on the CNTs. XRD analysis indicates that Au NPs have fcc crystal structure and CNTs have a good graphite structure. Raman spectroscopy results suggest that our sample includes double-walled CNTs. It is resulted that intensity of D-band reduces and G-band intensity raises and radial breathing mode (RBM) is changed by immobilizing of Au NPs on the CNTs. Raman...