Loading...
Search for: surface-proteins
0.005 seconds

    Graphene oxide strongly inhibits amyloid beta fibrillation

    , Article Nanoscale ; Volume 4, Issue 23 , 2012 , Pages 7322-7325 ; 20403364 (ISSN) Mahmoudi, M ; Akhavan, O ; Ghavami, M ; Rezaee, F ; Ghiasi, S. M. A ; Sharif University of Technology
    2012
    Abstract
    Since amyloid beta fibrillation (AβF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Aβ fibrillation in the aqueous solution. We showed that GO and their protein-covered surfaces delay the AβF process via adsorption of amyloid monomers. Also, the large available surface of GO sheets can delay the AβF process by adsorption of amyloid monomers. The inhibitory effect of the GO sheet was increased when we increase the concentration from 10% (in vitro; stimulated media) to 100% (in vivo; stimulated media). Conclusion: our results revealed that GO and their surface... 

    COVID-19 and picotechnology: Potential opportunities

    , Article Medical Hypotheses ; Volume 144 , 2020 Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Rezaei, N ; Sharif University of Technology
    Churchill Livingstone  2020
    Abstract
    Humanity's challenges are becoming increasingly difficult, and as these challenges become more advanced, the need for effective and intelligent action becomes more apparent. Meanwhile, the novel coronavirus disease (COVID-19) pandemic, which has plagued the world, could be considered as an opportunity to take a step toward the need for atomic engineering, compared to molecular engineering, as well as to accelerate this type of research. This approach, which can be expressed in terms of picotechnology, makes it possible to identify living cell types or in general, chemical and biological surfaces using their atomic arrays, and applied for early diagnosis even treatment of the disease. © 2020... 

    Protein corona impact on nanoparticle-cell interactions: Toward an energy-based model of endocytosis

    , Article Journal of Physics Condensed Matter ; Volume 32, Issue 11 , 2020 Shadmani, P ; Mehrafrooz, B ; Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Upon incubation of nanoparticles in biological fluids, a new layer called the protein corona is formed on their surface affecting the interactions between nanoparticles and targeted cells during the endocytosis process. In the present study, a mathematical model based on the diffusion of membrane mobile receptors is proposed. Opposing the endocytosis proceeding, membrane bending and tension energies are named as resistant energy. Also, the binding energy and free-energy associated with the configurational entropy are collectively termed promoter energy. Utilizing this model, endocytosis of gold nanoparticle (GNP) is simulated to explore the biological media effect. The results reveal that...