Loading...
Search for: surface-quality
0.006 seconds

    Feasibility Study on Ultrasonic Vibration Assisted Milling Process of BK7 Optical Glass

    , M.Sc. Thesis Sharif University of Technology Jamshidi Hassanabadi, Ali (Author) ; Akbari, Javad (Supervisor)
    Abstract
    This research studies the feasibility of the BK7 optical glass milling process with ultrasonic vibrations. Due to the fragility of glasses, especially optical glasses, machining is very sensitive and complex. For this reason, it is necessary to think for the glass machiners to minimize the defects and failures of the process. So far, efforts have been made to reduce the defects caused by machining on brittle materials, such as increasing the speed of the period, reducing the feed rate of the tool, changing the geometry and the type of tool, the type of process lubrication, etc. In addition, other operations performed to improve the surface of the glass are of better quality, using hybrid or... 

    Study the influence of ultrasonic vibration on grinding of Ti6Al4V

    , Article Proceedings of the 6th International Conference on Leading Edge Manufacturing in 21st Century, LEM 2011, 8 November 2011 through 10 November 2011 ; Novembe , 2011 Ghahramani Nick, M ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2011
    Abstract
    Titanium alloys, in particular Ti6Al4V, are increasingly used recently due to high strength-to-weight ratio, biocompatibility and robust mechanical-properties at high temperatures. However, Ti6Al4V have poor machinability because of their poor thermal conductivity and high reactivity. Usually in conventional grinding (CG) of these alloys, surface burning is unavoidable. Ultrasonic assisted grinding (UAG) is an efficient method for overcoming the poor machinability of such materials. In this research, effect of imposed vibration on grinding of Ti6Al4V is studied. Obtained results show forces and surface roughness are reduced 18% and 12% by UAG comparing to CG respectively. It also results in... 

    Effects of tool rake angle and tool nose radius on surface quality of ultraprecision diamond-turned porous silicon

    , Article Journal of Manufacturing Processes ; Volume 37 , 2019 , Pages 321-331 ; 15266125 (ISSN) Heidari, M ; Akbari, J ; Yan, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper presents an investigation of the effects of tool rake angle and nose radius on the surface quality of ultraprecision diamond-turned porous silicon. The results showed that as rake angle decreases, the high-stress field induced by the tool edge increases, causing microcracks to propagate extensively near the pore walls. As a result, the ductile-machined areas shrank under a negative tool rake angle. On the other hand, brittle fracture occurred around pores released cutting pressure significantly. These trends of rake angle effects are distinctly different from those in the cutting of non-porous silicon. Finite element simulation of stress in the cutting area agreed with the... 

    Spindle speed variation for regenerative chatter suppression in turning process with tool wear effect

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 4 , 2010 , Pages 619-626 ; 9780791849187 (ISBN) Haji Hajikolaei, K ; Vossoughi, G ; Rahaeifard, M ; Movahhedy, M ; ASME Turkey Section ; Sharif University of Technology
    Abstract
    Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, a single degree of freedom model of orthogonal turning process is used to set up the delay differential equation of motion with considering the tool wear effect as a contact force between the workpiece and tool flank surfaces. Sinusoidal spindle speed variations with different frequencies around the mean speed are modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. Results of the stability analysis and the... 

    Spindle speed variation and adaptive force regulation to suppress regenerative chatter in the turning process

    , Article Journal of Manufacturing Processes ; Volume 12, Issue 2 , August , 2010 , Pages 106-115 ; 15266125 (ISSN) Haji Hajikolaei, K ; Moradi, H ; Vossoughi, G ; Movahhedy, M. R ; Sharif University of Technology
    2010
    Abstract
    Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, two control strategies are developed to suppress chatter vibration in the turning process including a worn tool. In the first stage, a sinusoidal spindle speed variation around the mean speed is modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. In the second stage, to improve the response of the system which is associated with small ripples under the steady state condition, an adaptive controller is designed. In... 

    Effect of casting process on microstructure and tribological behavior of LM13 alloy

    , Article Journal of Alloys and Compounds ; Volume 475, Issue 1-2 , 2009 , Pages 321-327 ; 09258388 (ISSN) Ashiri, R ; Niroumand, B ; Karimzadeh, F ; Hamani, M ; Pouranvari, M ; Sharif University of Technology
    2009
    Abstract
    LM13 alloy is widely used in piston industry, due to its low coefficient of thermal expansion, excellent castability and hot tear resistance. In this research effect of casting process on wear behavior of LM13 alloy was investigated. First, samples were produced using two casting processes and heat treated. Then wear behavior of these samples under dry sliding condition was examined. Results of hardness and strength tests indicated that squeeze cast specimens exhibited higher mechanical properties. Wear experiment results showed that in both squeeze and gravity cast specimens, amount of weight loss increases with increase in sliding distance which is accompanied by reduction in wear rate and... 

    Parametric modelling and multi-objective optimization of electro discharge machining process parameters for sustainable production

    , Article Energies ; Volume 13, Issue 1 , 2019 ; 19961073 (ISSN) Niamat, M ; Sarfraz, S ; Ahmad, W ; Shehab, E ; Salonitis, K ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Electro Discharge Machining (EDM) can be an element of a sustainable manufacturing system. In the present study, the sustainability implications of EDM of special-purpose steels are investigated. The machining quality (minimum surface roughness), productivity (material removal rate) improvement and cost (electrode wear rate) minimization are considered. The influence and correlation of the three most important machining parameters including pulse on time, current and pulse off time have been investigated on sustainable production. Empirical models have been established based on response surface methodology for material removal rate, electrode wear rate and surface roughness. The... 

    Effects of tool rake angle and tool nose radius on surface quality of ultraprecision diamond-turned porous silicon

    , Article Journal of Manufacturing Processes ; Volume 37 , 2019 , Pages 321-331 ; 15266125 (ISSN) Heidari, M ; Akbari, J ; Yan, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper presents an investigation of the effects of tool rake angle and nose radius on the surface quality of ultraprecision diamond-turned porous silicon. The results showed that as rake angle decreases, the high-stress field induced by the tool edge increases, causing microcracks to propagate extensively near the pore walls. As a result, the ductile-machined areas shrank under a negative tool rake angle. On the other hand, brittle fracture occurred around pores released cutting pressure significantly. These trends of rake angle effects are distinctly different from those in the cutting of non-porous silicon. Finite element simulation of stress in the cutting area agreed with the... 

    Adaptive control of regenerative chatter in turning process with tool wear effect

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 10, Issue PART B , 2010 , pp. 1023-1030 ; ISBN: 9780791843833 Hajikolaei, K. H ; Moradi, H ; Vossoughi, G. R ; Alasty, A ; Movahhedi, M. R ; Sharif University of Technology
    Abstract
    Chatter suppression is of great importance for achieving high precision and surface quality in machining processes. A single degree of freedom model of orthogonal turning process is used to set up the nonlinear delay differential equation of motion. Tool wear effect is considered as the contact force between the workpiece and tool flank surfaces. Uncertainties in parameters of dynamic model and machining conditions are included in the model. An adaptive control strategy is applied for chatter suppression in cutting process. The force provided by a piezoactuator is the control input of the system. Results of stability analysis and adaptive control for two distinct cases of sharp and worn... 

    Adaptive control of regenerative chatter in turning process with tool wear effect

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Volume 10, Issue PART B , 2010 , Pages 1023-1030 ; 9780791843833 (ISBN) Haji Hajikolaei, K ; Moradi, H ; Vossoughi, G. R ; Alasty, A ; Movahhedi, M. R
    Abstract
    Chatter suppression is of great importance for achieving high precision and surface quality in machining processes. A single degree of freedom model of orthogonal turning process is used to set up the nonlinear delay differential equation of motion. Tool wear effect is considered as the contact force between the workpiece and tool flank surfaces. Uncertainties in parameters of dynamic model and machining conditions are included in the model. An adaptive control strategy is applied for chatter suppression in cutting process. The force provided by a piezoactuator is the control input of the system. Results of stability analysis and adaptive control for two distinct cases of sharp and worn...