Loading...
Search for: surface-tension-force
0.006 seconds

    An insight into the formation of liquid bridge and its role on fracture capillary pressure during gravity drainage in fractured porous media

    , Article Canadian Journal of Chemical Engineering ; Volume 99, Issue S1 , 2021 , Pages S212-S231 ; 00084034 (ISSN) Harimi, B ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The formation of liquid bridges can maintain capillary continuity between matrix blocks during gas/oil gravity drainage in fractured reservoirs. A travelling oil drop draining into a fracture either forms a liquid bridge or breaks into detached drops. However, the different characteristics of a travelling drop during its elongation and required conditions for transformation into a liquid bridge are not well described in the published literature. In this work, a one-dimensional model based on slender-drop theory is employed that holds gravity, viscosity, and surface tension forces but ignores inertia. This model, together with Young-Laplace equation, gives the fracture capillary pressure.... 

    Experimental investigation of spray characteristics of a modified bio-diesel in a direct injection combustion chamber

    , Article Experimental Thermal and Fluid Science ; 2016 ; 08941777 (ISSN) Ghahremani, A. R ; Saidi, M. H ; Hajinezhad, A ; Mozafari, A. A ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    Macroscopic and microscopic characteristics of spray of a Modified Bio-diesel Fuel (MBF), applying direct injection system have been explored and compared with those of conventional diesel fuel. MBF is a new combination of bio-diesel, molasses bio-ethanol, and water, which has been kept as a single-phase bio-fuel, employing an emulsifier. Lower emissions and production costs, higher oxygen content and cetane number are the key advantages of the MBF to be replaced by conventional fossil fuels in internal combustion engines. Applying atomization model, the spray atomization properties such as Ohnesorge number and Sauter Mean Diameter (SMD) have been investigated. Air entrainment analysis has... 

    Experimental investigation of spray characteristics of a modified bio-diesel in a direct injection combustion chamber

    , Article Experimental Thermal and Fluid Science ; Volume 81 , 2017 , Pages 445-453 ; 08941777 (ISSN) Ghahremani, A. R ; Saidi, M. H ; Hajinezhad, A ; Mozafari, A. A ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Macroscopic and microscopic characteristics of spray of a Modified Bio-diesel Fuel (MBF), applying direct injection system have been explored and compared with those of conventional diesel fuel. MBF is a new combination of bio-diesel, molasses bio-ethanol, and water, which has been kept as a single-phase bio-fuel, employing an emulsifier. Lower emissions and production costs, higher oxygen content and cetane number are the key advantages of the MBF to be replaced by conventional fossil fuels in internal combustion engines. Applying atomization model, the spray atomization properties such as Ohnesorge number and Sauter Mean Diameter (SMD) have been investigated. Air entrainment analysis has... 

    An interface–particle interaction approach for evaluation of the co-encapsulation efficiency of cells in a flow-focusing droplet generator

    , Article Sensors (Switzerland) ; Volume 20, Issue 13 , 2020 , Pages 1-17 Yaghoobi, M ; Saidi, M. S ; Ghadami, S ; Kashaninejad, N ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Droplet-based microfluidics offers significant advantages, such as high throughput and scalability, making platforms based on this technology ideal candidates for point-of-care (POC) testing and clinical diagnosis. However, the efficiency of co-encapsulation in droplets is suboptimal, limiting the applicability of such platforms for the biosensing applications. The homogeneity of the bioanalytes in the droplets is an unsolved problem. While there is extensive literature on the experimental setups and active methods used to increase the efficiency of such platforms, passive techniques have received less attention, and their fundamentals have not been fully explored. Here, we develop a novel... 

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved  

    Investigation of bubble formation and its detachment in shear-thinning liquids at low capillary and Bond numbers

    , Article Theoretical and Computational Fluid Dynamics ; Volume 33, Issue 5 , 2019 , Pages 463-480 ; 09354964 (ISSN) Oshaghi, M. R ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In the present paper, the formation of an air bubble in a shear-thinning non-Newtonian fluid was investigated numerically. For modeling, an algebraic volume of fluid (VOF) solver of OpenFOAM ® was improved by applying a Laplacian filter and was evaluated using the experimental results from the literature. The enhanced solver could compute the surface tension force more accurately, and it was important especially at low capillary and Bond numbers due to the dominance of surface tension force relative to the other forces. The adiabatic bubble growth was simulated in an axisymmetric domain for Bo = 0.05 , 0.1 , 0.5 and Ca = 10 - 1, 10 - 2, 10 - 3, 10 - 4, and the bubble detachment time and...