Loading...
Search for: surfactant-adsorption
0.01 seconds

    Influence of β-lactoglobulin and its surfactant mixtures on velocity of the rising bubbles

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , October , 2014 , pp. 361-368 ; ISSN: 09277757 Ulaganathan, V ; Krzan, M ; Lotfi, M ; Dukhin, S. S ; Kovalchuk, V. I ; Javadi, A ; Gunes, D. Z ; Gehin-Delval, C ; Malysa, K ; Miller, R ; Sharif University of Technology
    Abstract
    The rising velocity of air bubbles in surfactant solutions is a sensitive measure for the formation of a dynamic adsorption layer (DAL) at the bubble surface. Due to a certain surface coverage by adsorbed species the bubble surface starts to become immobilized and the rising velocity is retarded. There is a large difference in the retardation effect in presence of the protein β-lactoglobulin (BLG) alone and its mixed solutions with surfactants. In presence of added surfactants BLG forms complexes, which adsorb and retard the bubble rising velocity according to their respective surface activity and adsorption kinetics. While the nonionic surfactant C12DMPO does not show significant increase... 

    Spotlight on kinetic and equilibrium adsorption of a new surfactant onto sandstone minerals: A comparative study

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 50 , May , 2015 , Pages 12-23 ; ISSN: 18761070 Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    This paper presents a state of the art review of adsorption models for a new plant-based surfactant adsorption onto sandstone minerals. The adsorption data at both kinetic and equilibrium modes were obtained from batch experiments. Four adsorption kinetic models, five two-parameter, and six three-parameter equilibrium models were used for interpretation of the obtained data. Among the two and three-parameter isotherm models applied, the Jovanovic and the Khan isotherms showed the best fit, respectively. And the pseudo-second order model presented a better fit than other kinetic models. Finally, a computer-based modeling approach was developed and used for predicting the kinetics of... 

    Spotlight on kinetic and equilibrium adsorption of a new surfactant onto sandstone minerals: A comparative study

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 50 , May , 2015 , Pages 12-23 ; 18761070 (ISSN) Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2015
    Abstract
    This paper presents a state of the art review of adsorption models for a new plant-based surfactant adsorption onto sandstone minerals. The adsorption data at both kinetic and equilibrium modes were obtained from batch experiments. Four adsorption kinetic models, five two-parameter, and six three-parameter equilibrium models were used for interpretation of the obtained data. Among the two and three-parameter isotherm models applied, the Jovanovic and the Khan isotherms showed the best fit, respectively. And the pseudo-second order model presented a better fit than other kinetic models. Finally, a computer-based modeling approach was developed and used for predicting the kinetics of... 

    Bubble in flow field: A new experimental protocol for investigating dynamic adsorption layers by using capillary pressure tensiometry

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460, issue , 2014 , p. 369-376 Lotfi, M ; Bastani, D ; Ulaganathan, V ; Miller, R ; Javadi, A ; Sharif University of Technology
    Abstract
    For many years the model of a dynamic adsorption layer (DAL) is well established as explanation for the behavior of rising bubbles in surfactant solutions. This model explains the velocity profile and the evolution of the shape of a rising bubble based on the hypothesis of the balance between the drag force and the structure of the adsorbed layer governed by Marangoni convection. However, direct measurements of interfacial properties of the bubble during rising are a real challenge. Here we present a new experimental protocol called "bubble in flow field" suitable for direct measurements of dynamic interfacial properties of a bubble surface using the capillary pressure tensiometry under... 

    Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control

    , Article Chemical Engineering Research and Design ; Volume 111 , 2016 , Pages 449-460 ; 02638762 (ISSN) Farhadi, H ; Riahi, S ; Ayatollahi, S ; Ahmadi, H ; Sharif University of Technology
    Institution of Chemical Engineers  2016
    Abstract
    CO2 injection has proved to be the most common and efficient enhanced oil recovery techniques which leads to more residual oil recovery. Unfavorable sweep efficiency which results in fingering propagation and causes early gas breakthrough is the most challenging issue of gas flooding process. The aim of this work is to study foam stability and analyze the mobility of CO2 foam stabilized by mixture of raw silica nanoparticles and ethyl hexadecyl dimethyl ammonium bromide (cationic surfactant). The result is obtained through both dynamic and static techniques using a new adsorption index.NPS-stabilized foams are generated using Ross-Miles method. A novel index for the adsorption of surfactant... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Marangoni instabilities for convective mobile interfaces during drop exchange: Experimental study and CFD simulation

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 441, issue , 2014 , pp. 846-854 ; ISSN: 09277757 Javadi, A ; Karbaschi, M ; Bastani, D ; Ferri, J. K ; Kovalchuk, V. I ; Kovalchuk, N. M ; Javadi, K ; Miller, R ; Sharif University of Technology
    Abstract
    The inflow pattern of liquid into a droplet is studied experimentally using a surface active dye and compared with results of CFD simulations. The results show visual agreement between experiments and simulations. The CFD simulations show also good agreement with the surface tension measured by drop profile analysis tensiometry (PAT). The inflow of the surfactant induces a Marangoni instability caused by the local arrival of the surfactant at the drop surface. The onset of this Marangoni instability observed experimentally has a delay of about 10. s when compared with the simulation results. Different scenarios are discussed, including a boundary layer barrier, a kinetic-controlled... 

    Fast dynamic interfacial tension measurements and dilational rheology of interfacial layers by using the capillary pressure technique

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 407 , August , 2012 , Pages 159-168 ; 09277757 (ISSN) Javadi, A ; Krägel, J ; Makievski, A. V ; Kovalchuk, V. I ; Kovalchuk, N. M ; Mucic, N ; Loglio, G ; Pandolfini, P ; Karbaschi, M ; Miller, R ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The oscillating drop and bubble analyzer (ODBA) is an experimental set-up based on the measurement of capillary pressure under static and dynamic conditions. It allows studies of slow and fast dynamic surface and interfacial tensions, following different growing and oscillating drop or bubble protocols, as well as determination of the dilational interfacial visco-elasticity of liquid interfacial layers. For the visco-elasticity studies, drops or bubbles are subjected to harmonic oscillations of area or volume in a broad frequency range, and the resulting harmonic capillary pressure response is analyzed by Fourier analysis. Also, transient relaxations can be easily performed, which are of... 

    Adsorption of proteins at the solution/air interface influenced by added non-ionic surfactants at very low concentrations for both components. 1. Dodecyl dimethyl phospine oxide

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 475, Issue 1 , June , 2015 , Pages 62-68 ; 09277757 (ISSN) Lotfi, M ; Javadi, A ; Lylyk, S. V ; Bastani, D ; Fainerman, V. B ; Miller, R ; Sharif University of Technology
    Abstract
    The adsorption of proteins at liquid interfaces happens at rather low bulk concentrations due to their rather high surface activity. In contrast typical surfactants start to decrease the surface tension at bulk concentration in the range of mmol/l and reach a minimum value at about two or three orders of magnitude higher concentration. The two proteins studied here, β-lactoglobulin and β-casein, adsorb already remarkably at much lower concentrations, i.e. less than 1. μmol/l. When smallest amounts of a non-ionic surfactant are added to low concentrated protein solutions, changes in the surface tension are observed which cannot be explained by the existing theoretical models. An agreement... 

    Studies of the rate of water evaporation through adsorption layers using drop shape analysis tensiometry

    , Article Journal of Colloid and Interface Science ; Volume 308, Issue 1 , 2007 , Pages 249-253 ; 00219797 (ISSN) Fainerman, V. B ; Makievski, A. V ; Krägel, J ; Javadi, A ; Miller, R ; Sharif University of Technology
    2007
    Abstract
    With modified measuring procedure and measuring cell design in the drop profile tensiometer PAT, it became possible to study the rate of water evaporation through adsorbed or spread surface layers. This method was employed to measure the rate of water evaporation from drops covered by adsorbed layers of some proteins and surfactants, in particular n-dodecanol. It was shown that the formation of dense (double or condensed) adsorbed layers of protein and the formation of 2D-condensed n-dodecanol layer decrease the water evaporation rate by 20-25% as compared with pure water. At the same time, the adsorbed layers of ordinary surfactants (sodium dodecyl sulfate and nonionic ethoxylated...