Search for: surgery--computer-assisted
0.006 seconds

    Design of a 4 DOF laparoscopic surgery robot for manipulation of large organs

    , Article Studies in Health Technology and Informatics ; Volume 173 , 2012 , Pages 8-12 ; 09269630 (ISSN) ; 9781614990215 (ISBN) Alamdar, A ; Mirbagheri, A ; Farahmand, F ; Durali, M ; Sharif University of Technology
    In this paper, a 4-DOF robotic arm for tool handling in laparoscopic surgery is introduced. The robot provides sufficient force to handle endoscopic tools used for large organ manipulation and is capable of measuring the tool-tissue forces. The RCM constraint is achieved using a spherical mechanism and roll and insertion motions are provided using time pulley and spindle-drive, respectively. The forward and inverse kinematics of the robot was solved and the dimensions of its links were determined, using particle swarm optimization method, so that the maximum kinematic and dynamic performance could be achieved  

    Minimization of target registration error for vertebra in image-guided spine surgery

    , Article International Journal of Computer Assisted Radiology and Surgery ; Vol. 9, issue. 1 , January , 2014 , p. 29-38 Ershad, M ; Ahmadian, A ; Dadashi Serej, N ; Saberi, H ; Amini Khoiy, K ; Sharif University of Technology
    Purpose: The accuracy of pedicle screw placement during image-guided spine surgery (IGSS) can be characterized by estimating the target registration error (TRE). The major factors that influence TRE were identified, minimized, and verified with in vitro experiments. Materials and methods: Computed-tomography- compatible markers are placed over anatomical landmarks of lumbar vertebral segments in locations that are feasible and routinely used in surgical procedures. TRE was determined directly for markers placed on the pedicles of vertebra segments. First, optimum selections of landmarks are proposed for different landmarks according to the minimum achievable TRE values in different... 

    Robotic assisted reduction of femoral shaft fractures using stewart platform

    , Article Studies in Health Technology and Informatics, 19 January 2009 through 22 January 2009 ; Volume 142 , 2009 , Pages 177-179 ; 09269630 (ISSN) ; 9781586039646 (ISBN) Majidifakhr, K ; Kazemirad, S ; Farahmand, F ; Sharif University of Technology
    A robotic system with 6 DOF mobility was proposed for reduction of femoral shaft fractures based on Stewart platform. A plan for implementing the platform on bone fragments was introduced and a step by step strategy for performing the reduction procedure, based on the system's inverse kinematic solution, was proposed. The efficacy of the system was evaluated in some case studies and it was shown that it can be locked to act as an external fixator  

    A triple-jaw actuated and sensorized instrument for grasping large organs during minimally invasive robotic surgery

    , Article International Journal of Medical Robotics and Computer Assisted Surgery ; Volume 9, Issue 1 , 2013 , Pages 83-93 ; 14785951 (ISSN) Mirbagheri, A ; Farahmand, F ; Sharif University of Technology
    Background: Secure grasping and effective manipulation of delicate large organs during robotic surgery operations needs especially designed instruments that can enclose a large amount of tissue and feed back the pinch forces. Methods: A large organ triple-jaw grasper was instrumented using practical force sensory and actuating systems. A force tracking scheme was proposed to facilitate auto-grasping of large organs during robotic teleoperation surgery. An on-site force commanding/reflecting mechanism was also implemented to use the device as an independent hand-held robotic instrument. The efficacy of the robotic grasper was examined in phantom tests. Results: The instrument grasped large... 

    Tool-tissue force estimation in laparoscopic surgery using geometric features

    , Article Studies in Health Technology and Informatics ; Volume 184 , 2013 , Pages 225-229 ; 09269630 (ISSN) Kohani, M ; Behzadipour, S ; Farahmand, F ; Sharif University of Technology
    IOS Press  2013
    This paper introduces three geometric features, from deformed shape of a soft tissue, which demonstrate good correlation with probing force and maximum local stress. Using FEM simulation, 2D and 3D model of an in vivo porcine liver was built for different probing tasks. Maximum deformation angle, maximum deformation depth and width of displacement constraint of the reconstructed shape of the deformed body were calculated. Two neural networks were trained from these features and the calculated interaction forces. The features are shown to have high potential to provide force estimation either for haptic devices or to assess the damage to the tissue in large deformations of up to 40%  

    A hybrid algorithm for prediction of varying heart rate motion in computer-assisted beating heart surgery

    , Article Journal of Medical Systems ; Volume 42, Issue 10 , 2018 ; 01485598 (ISSN) Mansouri, S ; Farahmand, F ; Vossoughi, G ; Alizadeh Ghavidel, A ; Sharif University of Technology
    Springer New York LLC  2018
    An essential requirement for performing robotic assisted surgery on a freely beating heart is a prediction algorithm which can estimate the future trajectory of the heart in the varying heart rate (HR) conditions of real surgery with a high accuracy. In this study, a hybrid amplitude modulation- (AM) and autoregressive- (AR) based algorithm was developed to enable estimating the global and local oscillations of the beating heart, raised from its major and minor physiological activities. The AM model was equipped with an estimator of the heartbeat frequency to compensate for the HR variations. The RMS of the prediction errors of the hybrid algorithm was in the range of 165–361 μm for the... 

    Model-based needle control in prostate percutaneous procedures

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 1 , 2013 , Pages 58-71 ; 09544119 (ISSN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    In percutaneous applications, needle insertion into soft tissue is considered as a challenging procedure, and hence, it has been the subject of many recent studies. This study considers a model-based dynamics equation to evaluate the needle movement through prostate soft tissue. The proposed model estimates the applied force to the needle using the tissue deformation data and finite element model of the tissue. To address the role of mechanical properties of the soft tissue, an inverse dynamics control method based on sliding mode approach is used to demonstrate system performance in the presence of uncertainties. Furthermore, to deal with inaccurate estimation of mechanical parameters of... 

    Feasibility of infrared tracking of beating heart motion for robotic assisted beating heart surgery

    , Article International Journal of Medical Robotics and Computer Assisted Surgery ; Volume 14, Issue 1 , February , 2018 ; 14785951 (ISSN) Mansouri, S ; Farahmand, F ; Vossoughi, G ; Ghavidel, A. A ; Rezayat, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Background: Accurate tracking of the heart surface motion is a major requirement for robot assisted beating heart surgery. Method: The feasibility of a stereo infrared tracking system for measuring the free beating heart motion was investigated by experiments on a heart motion simulator, as well as model surgery on a dog. Results: Simulator experiments revealed a high tracking accuracy (81 μm root mean square error) when the capturing times were synchronized and the tracker pointed at the target from a 100 cm distance. The animal experiment revealed the applicability of the infrared tracker with passive markers in practical heart surgery conditions. Conclusion: With the current technology,...