Loading...
Search for: surgery-simulations
0.005 seconds

    Design and Fabrication of Haptic Master Robot for Telesurgery with Induction of Open Surgery Feeling

    , M.Sc. Thesis Sharif University of Technology Hadavand, Mostafa (Author) ; Farahmand, Farzam (Supervisor) ; Salarieh, Hassan (Supervisor)
    Abstract
    With the increasing trend toward Minimally Invasive Surgery (MIS) procedures in last 2 decades, the need to develop new robotic systems to facilitate such surgeries is more and more recognized. The aim of developing robotic surgery systems is not to replace surgeon with robots. Thus, the robotic surgery systems have the approach of master and slave robots. One of the main deficiencies of existing robotic surgery systems is the lack of sense of touch during the surgery. Consequently, the surgeon cannot touch the tissues to examine the quality of surgery .Hence This project describes the design and development of a 5 DOF force-reflective master robot (RoboMaster1) for haptic telesurgery... 

    Review on different experimental techniques developed for recording force-deformation behaviour of soft tissues; with a view to surgery simulation applications

    , Article Journal of Medical Engineering and Technology ; Volume 41, Issue 4 , 2017 , Pages 257-274 ; 03091902 (ISSN) Afshari, E ; Rostami, M ; Farahmand, F ; Sharif University of Technology
    Abstract
    Different experimental techniques which have been developed to obtain data related to force-deformation behaviour of soft tissues play an important role in realistically simulating surgery processes as well as medical diagnoses and minimally invasive procedures. Indeed, an adequate quantitative description of soft-tissue-mechanical-behaviour requires high-quality experimental data to be obtained and analysed. In this review article we will first scan the motivations and basic technical issues on surgery simulation. Then, we will concentrate on different experimental techniques developed for recording force-deformation (stress-strain) behaviour of soft tissues with focussing on the in-vivo... 

    A novel laparoscopic grasper with two parallel jaws capable of extracting the mechanical behaviour of soft tissues

    , Article Journal of Medical Engineering and Technology ; Volume 41, Issue 5 , 2017 , Pages 339-345 ; 03091902 (ISSN) Nazarynasab, D ; Farahmand, F ; Mirbagheri, A ; Afshari, E ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of... 

    Nonlinear adaptive impedance control of virtual tool-tissue interaction for use in endoscopic sinus surgery simulation system

    , Article 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 26 October 2016 through 28 October 2016 ; 2017 , Pages 66-71 ; 9781509032228 (ISBN) Ebrahimi, A ; Sadeghnejad, S ; Vossoughi, G ; Moradi, H ; Farahmand, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this article, a nonlinear adaptive impedance control strategy is proposed to adjust the impedance of a one-degree of freedom Falcon robot to a pre-defined nonlinear impedance which is an approximate mathematical representation of the sino-nasal tissue. Further developments can be used for a training simulator system for the otolaryngology surgery training purposes. The stability of the proposed control strategy and convergence of tracking error are proved by using Lyapunov Stability Theorem. Two different scenarios are considered for simulation studies including a declining contact force and also an oscillatory contact force between the user hand and the haptic interface device.... 

    Design and Implementation of a Control System for Stable and Transparent Endoscopic Sinus Surgery Simulator

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Ali (Author) ; Vossoughi, Gholamreza (Supervisor) ; Moradi, Hamed (Supervisor)
    Abstract
    The main goal of this project is to design and implement an Endoscopic Sinus Surgery Simulator using a nonlinear model relating the force and displacement of the surgery tool interacting with the virtual sinus tissue. This model approximately matches the force-displacement data attained from the experiments conducted on the real sinus tissues. To simulate the behavior of the sinus tissue in a virtual environment, a haptic device is utilized which imitates the behavior of the surgery tool interacting with the tissue model. The haptic device in this project is a Falcon Robot. Because of the uncertainties in the parameters of the robot and the operator’s hand model (which is considered in the... 

    Design and Implimentation of an Online Robust Model Predictive Controller for Stabilization and Transparency of Sinus Surgery Haptic Simulator

    , M.Sc. Thesis Sharif University of Technology Khadivar, Farshad (Author) ; Vossoughi, Gholamreza (Supervisor) ; Moradi, Hamed (Supervisor)
    Abstract
    No one bears thinking about undergoing a surgery by an unexpirienced surgeon, the consideration of which implies the prominence of effective surgical trainings. The advent of utilizing haptic interfaces as a novelty in this field has led to a more promising surgery education. These haptic interfaces consist of three communicating parts namely: operator’s hand, haptic robot, and tissue virtual environment. Design and implementation of a proper controller in order to stabilize the haptic interface during surgery simulation, with acceptable transparency, is still novel an otherwise challenging research field. In this thesis we consider an appropriate nonlinear model for both virtual tissue as... 

    Conceptual design of a miniaturized hybrid local actuator for Minimally Invasive Robotic Surgery (MIRS) instruments

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2011 , Pages 2140-2143 ; 1557170X (ISSN); 9781424441211 (ISBN) Saedi, S ; Mirbagheri, A ; Farahmand, F ; Sharif University of Technology
    Abstract
    The actuation mechanism of the tip of an endoscopic instrument is a major problem in designing miniature scale motorized instruments, especially when a high level of functionality and multi degrees of freedom (DOF) are concerned. We evaluated the different possible actuation methods for an endoscopic needle holder and proposed a new design of hybrid local-actuation, including a micro DC motor and a piezoelectric (PZT) actuator. The DC motor provided the long movement course required for opening-closing function of the gripper while the PZT guaranteed the high gripping force required for holding the needle. A compact serial configuration was considered for the actuators, producing an overall... 

    Real-time simulation of the nonlinear visco-elastic deformations of soft tissues

    , Article International Journal of Computer Assisted Radiology and Surgery ; Volume 6, Issue 3 , 2011 , Pages 297-307 ; 18616410 (ISSN) Basafa, E ; Farahmand, F ; Sharif University of Technology
    Abstract
    Purpose: Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. Method: The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. Results: The model was able to replicate complex biological soft tissue... 

    A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery

    , Article Medicine Meets Virtual Reality 16 - Parallel, Combinatorial, Convergent: NextMed by Design, MMVR 2008, Long Beach, CA, 30 January 2008 through 1 February 2008 ; Volume 132 , 2008 , Pages 23-25 ; 09269630 (ISSN); 9781586038229 (ISBN) Basafa, E ; Farahmand, F ; Vossoughi, G ; Sharif University of Technology
    IOS Press  2008
    Abstract
    An extension to the classical mass-spring model for more realistic simulation of soft tissues for surgery simulation was proposed. The conventional equations of mass-spring model were generalized for non-linear springs, and model parameters were tuned using experimental data. Results show that the proposed model is fast and interactive, and also demonstrate the typical nonlinear and visco-elastic behaviors of soft tissues well. © 2008 The authors. All rights reserved  

    Modeling, simulation, and optimal initiation planning for needle insertion into the liver

    , Article Journal of Biomechanical Engineering ; Volume 132, Issue 4 , 2010 ; 01480731 (ISSN) Sharifi Sedeh, R ; Ahmadian, M. T ; Janabi Sharifi, F ; Sharif University of Technology
    2010
    Abstract
    Needle insertion simulation and planning systems (SPSs) will play an important role in diminishing inappropriate insertions into soft tissues and resultant complications. Difficulties in SPS development are due in large part to the computational requirements of the extensive calculations in finite element (FE) models of tissue. For clinical feasibility, the computational speed of SPSs must be improved. At the same time, a realistic model of tissue properties that reflects large and velocity-dependent deformations must be employed. The purpose of this study is to address the aforementioned difficulties by presenting a cost-effective SPS platform for needle insertions into the liver. The study... 

    Phenomenological tissue fracture modeling for an Endoscopic Sinus and Skull Base Surgery training system based on experimental data

    , Article Medical Engineering and Physics ; Volume 68 , 2019 , Pages 85-93 ; 13504533 (ISSN) Sadeghnejad, S ; Farahmand, F ; Vossoughi, G ; Moradi, H ; Mousa Sadr Hosseini, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS)training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF)tissue is...