Loading...
Search for: swimming
0.005 seconds

    Simulation of Paramecium Chemotaxis Exposed to Calcium Gradients

    , Article Cell Biochemistry and Biophysics ; Volume 74, Issue 2 , 2016 , Pages 241-252 ; 10859195 (ISSN) Nematollahi Sarvestani, A ; Shamloo, A ; Ahmadian, M. T ; Sharif University of Technology
    Humana Press Inc  2016
    Abstract
    Paramecium or other ciliates have the potential to be utilized for minimally invasive surgery systems, making internal body organs accessible. Paramecium shows interesting responses to changes in the concentration of specific ions such as K+, Mg2+, and Ca2+ in the ambient fluid. Some specific responses are observed as, changes in beat pattern of cilia and swimming toward or apart from the ion source. Therefore developing a model for chemotactic motility of small organisms is necessary in order to control the directional movements of these microorganisms before testing them. In this article, we have developed a numerical model, investigating the effects of Ca2+ on swimming trajectory of... 

    Hydrodynamic Simulation and Flow Pattern Analysis of Shark Undulation Motions

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi Chamkakaei, Mohsen (Author) ; Abbaspour Tehrani Fard, Majid (Supervisor)
    Abstract
    Many species in nature exist which human can reach the aims of flying and swimming by inspiring from them. Observations show that fish can use their especial undulating motions of body/fins to crusing, increase performance, suddenly acceleration, and maneuvering. To design a robot fish and benefit the characteristics and abilities of a live fish, using its real geometry and kinematics in the robot is vital. Therefore, simulations are essential to better exploiting the fish behavior, which can obtain useful consequences by using computational fluid dynamics. In this thesis, first the kinematics of sharks is investigated. Then, investigations are accomplished by utilizing an unsteady finite... 

    Experimental and Numerical Investigation of Eel Hydrodynamics

    , M.Sc. Thesis Sharif University of Technology Babakhani Galangashi, Reza (Author) ; Abbaspour Tehrani, Majid (Supervisor) ; Khorasnachi, Mahdi (Supervisor) ; Shafiei, Mohammad Behshad (Co-Supervisor)
    Abstract
    In the present study, the objective was to obtain the forward and backward swimming equation for the fiery eel and the European Eel in the experimental section. Then, by processing the videos, swimming equations were extracted. The obtained equations were used to move the 3D eel geometry of the STAR-CCM + software. The purpose of numerical modeling is to study the effect of body amplitude and wave frequency on the forces applied on the eel body during swimming. Numerical simulations were performed for the three amplitudes of 0.1, 0.115, and 0.138m and four different frequencies of 1, 1.2, 1.2 Hz, and Reynolds number 3857. The results of numerical work show us that the increase in the wave... 

    Numerical study of propulsion performance in swimming fish using boundary element method

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 39, Issue 2 , 2017 , Pages 443-455 ; 16785878 (ISSN) Najafi, S ; Abbaspour, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In this paper, hydrodynamic simulation of fish-like swimming for two types of aquatic animals including tuna fish and giant danio is presented. We employ an unsteady three-dimensional inviscid boundary element method including time stepping algorithm to capture the wake sheet and flow features around swimming fish in a straight course. At each time step, an unsteady Bernoulli equation was used to find the pressure distribution and thrust generated by the animal. To couple fluid solver with kinematic equations of flexible body, undulating motions of backbone were defined using a prescribed continuous function. Although the flexible motion mechanism controls the fish swimming but no structural... 

    Independent control of multiple magnetic microrobots: design, dynamic modelling, and control

    , Article Journal of Micro-Bio Robotics ; Volume 16, Issue 2 , 27 June , 2020 , Pages 215-224 Khalesi, R ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Swimming microrobots have a variety of applications including drug delivery, sensing, and artificial fertilization. Their small size makes onboard actuation very hard, and therefore an external source such as the magnetic field is a practical way to steer and move the robot. In this paper, we have designed a novel microrobot steered by magnetic paddles. We have also discussed design parameters where, based on the conducted simulation, the robot speed reaches 520 um/s. It is shown that the microrobot speed depends on the robot paddle dimensions. According to the microrobots motion characteristics and their different reactions to the same input, we have designed a steering strategy for... 

    Design and Fabrication of Microfluidic Chip for Selection of Functional Sperm

    , M.Sc. Thesis Sharif University of Technology Ahmadkhani, Nima (Author) ; Saadatmand, Maryam (Supervisor) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Kazemnejad, Somaieh (Co-Supervisor)
    Abstract
    Infertility is a growing global issue with significant psychological, economic, and social consequences, which among them, male factor infertility problems make up a considerable portion. The conventional methods of sperm separation inclusive of density-gradient centrifugation and swim-up with numerous problems contain DNA fragmentation and low yield, and both of the methods are not effective for samples with low sperm counts. Modern microfluidic systems are trying to improve this problem by increasing the quality of the isolated sperms. However, most of these systems rely solely on sperm motility as a separation mechanism, which is not a sufficient condition for the separated sperm to be... 

    Design and Dynamical Modelling and Control of a Micro-swimmer with High Maneuverability

    , M.Sc. Thesis Sharif University of Technology Esfandbod, Alireza (Author) ; Nejat, Hossein (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    Up to now many different mechanisms have been proposed for a swimming micro robot, but most of the previously designed micro robots are not able to perform three- dimensional maneuver and the motion of the proposed swimmers are limited along a straight line or in a plane. Some important issues that must be ruled in designing micro robots include: reduced number of actuators, high maneuverability, high motion controllability and elimination of lateral drift. In this study the aim is to design a micro swimmer with the aforementioned capabilities as much as possible. In this regard, many different ideas based on the quadrotor motion, flagellated bacteria and spiral flagellated bacteria, Fish... 

    Video images and undulatory movement equation of pangasius sanitwongsei's caudal fin of steady swimming fish

    , Article International Journal of Design and Nature and Ecodynamics ; Vol. 9, issue. 2 , 2014 , pp. 95-108 ; ISSN: 1755-7445 Vaghefi, A. S ; Abbaspour, M ; Sharif University of Technology
    Abstract
    Experimental hydrodynamics imaging of four Pangasius sanitwongsei were considered. A quantitative characterization of caudal fin is presented in this article. Steady swimming of four P. sanitwongsei with different total length was studied experimentally and taped by high-speed digital video, and undulatory movement of each fish at different velocity was revealed. The pattern of body undulatory movement of the fish was drawn from the video images. Three main factors that determine the fish swimming behavior are Reynolds number, Strouhal number and shape. In this study, Lf/L was chosen as a characteristic of shape, where Lf was the distance from the start of the head to the end of the head.... 

    Numerical analysis of ciliary beat in Paramecium: Increasing ciliary spacing as a low energy cost method for maneuvering

    , Article Recent Patents on Mechanical Engineering ; Volume 6, Issue 3 , September , 2013 , Pages 227-237 ; 1874477X (ISSN) Nematollahi, A ; Zand, M. M ; Sharif University of Technology
    2013
    Abstract
    In recent years, a number of patents have been devoted to designing micro robots for minimally invasive therapies inspired by Paramecium. Paramecium changes its swimming direction due to application of an external magnetic or electric field. Changing ciliary beat direction and frequency have been identified as possible methods for maneuvering through water; however, effects of variations in ciliary spacing on swimming trajectory have been poorly studied. In this work, it is aimed to analyze the effects of adjusting the ciliary spacing on swimming trajectory. For determining the swimming trajectory, Paramecium membrane is discretized to boundary elements with length of 15μm on which there are... 

    Microswimmer-induced chaotic mixing

    , Article Journal of Fluid Mechanics ; Volume 779 , 2015 , Pages 669-683 ; 00221120 (ISSN) Jalali, M.A ; Khoshnood, A ; Alam, M. R ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    Efficient mixing, typically characterised by chaotic advection, is hard to achieve in low Reynolds number conditions because of the linear nature of the Stokes equation that governs the motion. Here we show that low Reynolds number swimmers moving in quasi-periodic orbits can result in considerable stretching and folding of fluid elements. We accurately follow packets of tracers within the fluid domain and show that their trajectories become chaotic as the swimmer's trajectory densely fills its invariant torus. The mixing process is demonstrated in two dimensions using the Quadroar swimmer that autonomously propels and tumbles along quasi-periodic orbits with multi-loop turning trajectories.... 

    Modeling Paramecium swimming in a capillary tube

    , Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 658-667 ; 10263098 (ISSN) Sarvestani, A. N ; Shamloo, A ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    In certain types of biomimetic surgery systems, micro robots inspired by Paramecium are designed to swim in a capillary tube for gaining access to internal organs with minimal invasion. Gaining insight into the mechanics of Paramecium swimming in a capillary tube is vital for optimizing the design of such systems. There are two approaches to modeling the physics of micro swimming. In the envelope approach, which is widely accepted by researchers, Paramecium is approximated as a sphere, self-propelled by tangential and normal surface distortions. However, not only is this approach incapable of considering the specific geometry of Paramecium, but it also neglects short range hydrodynamic... 

    Design of a Setup for Simultaneous Control of Multiple Magnetic Microrobots

    , Ph.D. Dissertation Sharif University of Technology Khalesi, Ruhollah (Author) ; Nejat Pishkenari, Hossein (Supervisor) ; Vossughi, Gholamreza (Co-Supervisor)
    Abstract
    Microrobots (MRs) have attracted a lot of attention during recent years due to their promising biomedical applications. Due to their small size, these robots have limited capability to carry energy sources, sensors, or actuators, so researchers try to transfer energy from outside as much as possible. For this purpose, various actuation methods such as optical, acoustic, electric, and magnetic have been proposed. Magnetic field is the most used energy source. The current study deals with the design and implementation of a system for simultaneous independent control of multiple swimming magnetic MRs. The ability to control multiple MRs simultaneously and independently could lead to higher... 

    Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway

    , Article Life Sciences ; Volume 146 , 2016 , Pages 52-57 ; 00243205 (ISSN) Madjid Ansari, A ; Farzam Pour, S ; Sadr, A ; Shekarchi, B ; Majid Zadeh, A. K ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    Aims Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Main methods Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2 h and 2 weeks 2 h a day). Locomotor... 

    Optimal motion control of three-sphere based low-Reynolds number swimming microrobot

    , Article Robotica ; Volume 40, Issue 5 , 2022 , Pages 1257-1273 ; 02635747 (ISSN) Nejat Pishkenari, H ; Mohebalhojeh, M ; Sharif University of Technology
    Cambridge University Press  2022
    Abstract
    Microrobots with their promising applications are attracting a lot of attention currently. A microrobot with a triangular mechanism was previously proposed by scientists to overcome the motion limitations in a low-Reynolds number flow; however, the control of this swimmer for performing desired manoeuvres has not been studied yet. Here, we have proposed some strategies for controlling its position. Considering the constraints on arm lengths, we proposed an optimal controller based on quadratic programming. The simulation results demonstrate that the proposed optimal controller can steer the microrobot along the desired trajectory as well as minimize fluctuations of the actuators length. ©... 

    Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray's in flapping motion

    , Article Applied Ocean Research ; Volume 109 , 2021 ; 01411187 (ISSN) Safari, H ; Abbaspour, M ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Manta ray swimming or bio-inspiration propulsion system, as a special type of marine propulsion system, is used for submersible vehicles that require high-speed maneuverability and stability, such as glider and AUV. In a manta ray swimming, the thrust force is generated by a couple of undulation and oscillation of wing, so that the direction of undulation wave and oscillation is upright and perpendicular to the direction of thrust force, respectively. It is possible to combine these two movement modes (flapping motion) on the three-dimensional model without considering the effects of wing twisting and flexibility to simplify and better understand the physical behaviors or special study of... 

    Details study on the kinematic characteristics of manta ray section in flapping motion and exploring its application in wave glider propulsion system

    , Article Sustainable Energy Technologies and Assessments ; Volume 53 , 2022 ; 22131388 (ISSN) Abbaspour, M ; Safari, H ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    It has always been a human challenge to inspire natural configurations and phenomena and benefit from their merits in improving the performances of man-made proposed aero/hydro vehicles. For example, the manta rays are known for their great swimming performances. To design and fabricate an underwater robot based on the manta ray geometry and its kinematic characteristics, it is important to initially study its hydrodynamic behavior and possibly arrive at some key design parameters, which can remarkably help to figure out an optimum geometry with high swimming performances. The main objective of this study is to focus on the merits of gliding motion inspired by the manta ray fish considering... 

    The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices

    , Article Journal of Assisted Reproduction and Genetics ; Volume 39, Issue 1 , 2022 , Pages 19-36 ; 10580468 (ISSN) Ahmadkhani, N ; Hosseini, M ; Saadatmand, M ; Abbaspourrad, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to...