Loading...
Search for: switching-systems
0.007 seconds
Total 27 records

    A new method for computation the success probability of coverage for switch unit in the switching systems

    , Article International Journal of Engineering Transactions C: Aspects ; Volume 33, Issue 12 , 2020 , Pages 2509-2513 Yaghoubi, A ; Gholami, P ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    Redundancy technique is used to improve performance and achieving to increase the lifetime of a system. Nowadays, the redundancy method is applied in many industries. One of the common methods of redundancy is its utilization in the switching systems. In switching systems, one or more components are considered active mode and the others in the standby state to be used by switch if necessary. In order to be fully utilized all the components in the redundant device, the switch unit must perform its function, such as switching, perfectly. Successful coverage by switch unit is expressed with a probability. In this paper, a new approach to the likelihood of switch success is proposed, and showing... 

    Hybrid switching control of automotive cold start hydrocarbon emission

    , Article Proceedings of the American Control Conference ; 2013 , Pages 4417-4422 ; 07431619 (ISSN) ; 9781479901777 (ISBN) Salehi, R ; Shahbakhti, M ; Hedrick, J. K ; Sharif University of Technology
    2013
    Abstract
    Reduction of cold start hydrocarbon (HC) emission requires a proper compromise between low engine-out HC emission and fast light-off of the three way catalytic converter (TWC). In this paper a model based approach is used to design and optimize a hybrid switching system for reducing HC emission of a mid-sized passenger car during the cold start phase of FTP-75. This hybrid system takes the benefit of increasing TWC temperature during the early stages of the driving cycle by switching between different operational modes. The switching times are optimized to reduce the cumulative tailpipe HC emission of an experimentally validated automotive emission model. It is shown that the new hybrid... 

    A packet based photonic label switching router for a multi-rate all-optical CDMA based GMPLS switch

    , Article IEEE Journal of Selected Topics in Quantum Electronics ; Vol.13, No.5 , September/October , 2007 , PP. 1522-1530 Farnoud, F ; Ibrahimi, M ; Salehi, J. A ; Sharif University Of Technology
    Abstract
    A novel packet-based photonic label switching router for a multirate all-optical switch using generalized multiprotocol label switching is proposed. The idea is based on using optical code-division multiple access (OCDMA) as multiplexing technique and treating OCDMA codes as labels. The system can coexist with current wavelength division multiplexing systems on the same infrastructure. The concept of switch fabric is introduced. Label processing and label swapping functionalities of the switch are discussed. In-depth analyses are made for spectrally phase-encoded OCDMA (SPE-OCDMA) due to its capabilities of supporting high data rates, large code cardinality, and its secure transmission.... 

    Concurrent learning based finite-time parameter estimation in adaptive control of uncertain switched nonlinear systems

    , Article Journal of Control, Automation and Electrical Systems ; Volume 28, Issue 4 , 2017 , Pages 444-456 ; 21953880 (ISSN) Nazari Goldar, S ; Yazdani, M ; Sinafar, B ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In this paper, We develop concurrent learning adaptive controller, which uses recorded and current data concurrently for adaptation, to model reference adaptive control (MRAC) of uncertain switched nonlinear systems. In standard MRAC architecture for switched systems, the adaptive update laws are derived based on the gradient descent scheme, but here we developed two novel parameter estimation schemes by using modification terms in adaptation laws in which recorded data are used simultaneously with current data and a triggering time is considered in which a sufficient condition on the linear independence of the recorded data is obtained to guarantee the exponential convergence of tracking... 

    Concurrent learning based finite time parameter estimation in adaptive control of uncertain switched systems

    , Article 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 26 October 2016 through 28 October 2016 ; 2017 , Pages 258-265 ; 9781509032228 (ISBN) Yazdani, M ; Nazari, S ; Sinafar, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, We propose concurrent learning adaptive controller, which uses recorded and current data concurrently for adaptation, to model reference adaptive control (MRAC) of uncertain switched systems. In standard MRAC architecture for switched systems, the adaptive update laws are derived based on the gradient descent scheme, but here we developed two novel parameter estimation schemes by using modification terms in adaptation laws in which recorded data is used simultaneously with current data and a triggering time is considered in which a sufficient condition on the linear independence of the recorded data is obtained to guarantee the exponential convergence of tracking error and... 

    Real-time hybrid switching control of automotive cold start hydrocarbon emission

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Vol. 136, issue. 4 , January , 2014 Salehi, R ; Shahbakhti, M ; Hedrick, J. K ; Sharif University of Technology
    Abstract
    Reduction of cold start hydrocarbon (HC) emissions requires a proper compromise between low engine-out HC emission and fast light-off of the three way catalytic converter (TWC). In this paper, a hybrid switching system is designed and optimized for reducing HC emissions of a mid-sized passenger car during the cold start phase of FTP-75 (Federal Test Procedure). This hybrid system has the benefit of increasing TWC temperature during the early stages of the driving cycle by switching between different operational modes. The switching times are optimized to reduce the cumulative tailpipe HC of an experimentally validated automotive emission model. The designed hybrid system is tested in... 

    Adaptive prescribed performance control of switched MIMO uncertain nonlinear systems subject to unmodeled dynamics and input nonlinearities

    , Article International Journal of Robust and Nonlinear Control ; Volume 28, Issue 18 , 2018 , Pages 5981-5996 ; 10498923 (ISSN) Malek, S. A ; Shahrokhi, M ; Vafa, E ; Moradvandi, A ; Sharif University of Technology
    Abstract
    In this paper, the design of an adaptive tracking control for a class of switched uncertain multiple-input–multiple-output nonlinear systems in the strict-feedback form with unmodeled dynamics in the presence of three types of input nonlinearity under arbitrary switching has been addressed. By means of an intelligent approximator like a fuzzy logic system or a neural network, the unknown dynamics are estimated. The unmodeled dynamics have been tackled with a dynamic signal. A universal framework for describing different types of input nonlinearity including saturation, backlash, and dead zone has been utilized. By applying the backstepping approach and the common Lyapunov function method,... 

    Adaptive finite-time fault-tolerant controller for a class of uncertain MIMO nonlinear switched systems subject to output constraints and unknown input nonlinearities

    , Article Nonlinear Analysis: Hybrid Systems ; Volume 35 , February , 2020 Moradvandi, A ; Malek, S. A ; Shahrokhi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this work, design of an adaptive finite-time fault-tolerant controller for a class of uncertain multi-input multi-output (MIMO) nonlinear switched systems with unmodeled dynamics subject to asymmetric time-varying output constraints and unknown faulty input nonlinearities has been addressed. The number of actuator faults can be infinite. In addition, the proposed control algorithm can cope with different unknown types of input nonlinearities namely, saturation, dead zone, backlash, and hysteresis. Actuator faults and input nonlinearities can be different in different modes. To estimate the system uncertainties, neural networks (NNs) have been employed and the unmodeled dynamics has been... 

    High-fidelity magnetic characterization and analytical model development for switched reluctance machines

    , Article IEEE Transactions on Magnetics ; Volume 49, Issue 4 , 2013 , Pages 1505-1515 ; 00189464 (ISSN) Nasirian, V ; Kaboli, S ; Davoudi, A ; Moayedi, S ; Sharif University of Technology
    2013
    Abstract
    This paper proposes a new experimental procedure for magnetic characterization of switched reluctance machines. In the existing methods, phase voltage and current data are captured and further processed to find the flux linkage. Conventionally, assuming zero initial flux value, the flux linkage can be found by integrating the corresponding voltage term. However, the initial flux value is usually unknown, e.g., it can be nonzero when the current is zero due to the residual flux effect, and, thus, imposes error in magnetic characterization. The proposed method addresses this issue by considering an additional equation in steady state. This method injects a low-frequency sinusoidal current to... 

    Comparative analytical performance evaluation of adaptivity in wormhole-switched hypercubes

    , Article Simulation Modelling Practice and Theory ; Volume 15, Issue 4 , 2007 , Pages 400-415 ; 1569190X (ISSN) Patooghy, A ; Sarbazi Azad, H ; Sharif University of Technology
    2007
    Abstract
    In this paper, we study the effect of adaptivity of the routing algorithm on the overall performance of a hypercube multicomputer using wormhole switching. To this end, we use three accurate analytical models proposed for deterministic, fully-adaptive, and partially-adaptive routing algorithms in the hypercube. We compare these three different classes of routing algorithms under different working conditions and structural factors. It is widely believed that the level of adaptivity can result in better performance. Our analysis shows that under uniform traffic load, the employed partially-adaptive routing algorithm exhibits a lower performance compared to the considered deterministic routing... 

    Piecewise affine system modeling and control of PWM converters

    , Article Journal of Circuits, Systems and Computers ; Volume 16, Issue 1 , 2007 , Pages 113-128 ; 02181266 (ISSN) Tahami, F ; Molaei, B ; Sharif University of Technology
    2007
    Abstract
    The averaged switch modeling approach is a powerful method for representing the behavior of a wide variety of converters through equivalent circuits. The model is not linear and it is common to perform a small signal linearization about an operating point and design a linear controller. Models obtained with such method involve considerable approximation and produce results that are limited for high performance controller designs. In this paper a piecewise affine approximation technique is introduced for modeling PWM converters. This model is much more precise in predicting the dynamic response of averaged nonlinear model comparing the linear model. This paper also presents a piecewise linear... 

    Performance comparison of switched-capacitor and switched-current pipeline ADCs

    , Article 2007 IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Orleans, LA, 27 May 2007 through 30 May 2007 ; 2007 , Pages 2252-2255 ; 02714310 (ISSN) Nikandish, G ; Sedighi, B ; Sharif Bakhtiar, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2007
    Abstract
    In this paper a theoretical comparison between the performance of switched-capacitor (SC) and switched-current (SI) pipeline analog-to-digital converters (ADCs) is presented. Power dissipation and die area of SC and SI implementations are compared based on linearity and noise constraints. It is shown that if nonlinearity errors of the class AB SI ADCs are removed by calibration, their performance prevails that of the SC ADCs. Also it is shown that class AB SI ADCs occupy less die area than SC ADCs for a given resolution. © 2007 IEEE  

    Optimization of THD and suppressing certain order harmonics in PWM inverters using genetic algorithms

    , Article Joint 2006 IEEE Conference on Control Applications (CCA), Computer-Aided Control Systems Design Symposium (CACSD) and International Symposium on Intelligent Control (ISIC), Munich, 4 October 2006 through 6 October 2006 ; 2006 , Pages 874-879 ; 0780397983 (ISBN); 9780780397989 (ISBN) Sayyah, A ; Aflaki, M ; Rezazade, A. R ; Sharif University of Technology
    2006
    Abstract
    In this paper the aim is to minimize the total harmonic distortion (THD) in PWM inverters while suppressing chosen harmonics concurrently and maintaining the fundamental component of the output voltage at a required level. This is reformed as an optimization task and the optimal pulse patterns are accomplished using genetic algorithm (GA) optimization technique to minimize a predefined fitness function. The complete solutions that suppress the 5 th and 7 th harmonics and optimize the THD are given. A practical limitation on the determination of sequential switching angles has been considered as a set of constraints in derivation of the results. © 2006 IEEE  

    A new model reference adaptive control structure for uncertain switched systems with unmodeled input dynamics

    , Article Transactions of the Institute of Measurement and Control ; Volume 37, Issue 10 , 2015 , Pages 1171-1180 ; 01423312 (ISSN) Sinafar, B ; Rikhtehgar Ghiasi, A ; Karimi Fazli, A ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this paper, a new model reference adaptive controller (MRAC) for uncertain switched linear systems is developed. A class of uncertain switched linear systems with parametric mismatched and input matched uncertainties, control input effectiveness and unmodeled dynamics is studied in this paper. The difference in input matrix for different switching modes which means the input channel degradation is investigated through this paper. By using common Lyapunov function method and developing new linear matrix inequality based sufficient conditions, uniform ultimate boundedness of the reference tracking error is guaranteed by switched MRAC and by using a novel nonlinear controller term, the size... 

    Controller Design For Fractional Order Switched Systems

    , Ph.D. Dissertation Sharif University of Technology Malek, Alireza (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Switched systems as a subset of hybrid systems have both discrete and continuous behaviors and have attracted a lot of attention during the past decades. A set of subsystems or modes whose sequence is specified by a switching rule makes the switched system. Another category of systems is the fractional order system in which the order of derivatives is not limited to integers. This feature has provided a significant capacity for this type of system. On the other hand, every real system faces a set of limitations that neglecting them may reduce the quality of control or even lead to system instability. The purpose of this research is to model and control the switched system, whose subsystems... 

    Excitation shifting: A general low-cost solution for eliminating ultra-low-frequency torque ripple in switched reluctance machines

    , Article IEEE Transactions on Magnetics ; Volume 49, Issue 9 , Sept , 2013 , Pages 5135-5149 ; 00189464 (ISSN) Nasirian, V ; Davoudi, A ; Kaboli, S ; Edrington, C. S ; Sharif University of Technology
    2013
    Abstract
    Switched reluctance machines (SRMs) suffer from ultra-low-frequency torque ripple in single pulse mode. This ripple is the result of an imbalance in phase currents, when multiphase excitation occurs. This paper investigates the origin of this imbalance and identifies the imbalanced phase. Excitation shifting strategy, which delays excitation of the imbalanced phase, is then proposed. The delay angle adjusts current amplitude in the imbalanced phase to attain a perfect balance between all phases. The excitation shifting strategy is a general solution, which is applicable to both three-phase and four-phase machines. In addition, the proposed method can be implemented by a much simpler drive... 

    A different switching surface stabilizing an existing unstable periodic gait: an analysis based on perturbation theory

    , Article Nonlinear Dynamics ; Volume 81, Issue 4 , 2015 , Pages 2127-2140 ; 0924090X (ISSN) Safa, A. T ; Alasty, A ; Naraghi, M ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Limit cycle walkers are known as a class of walking robots capable of presenting periodic repetitive gaits without having local controllability at all times during motion. A well-known subclass of these robots is McGeer’s passive dynamic walkers solely activated by the gravity field. The mathematics governing this style of walking is hybrid and described by a set of nonlinear differential equations along with impulses. In this paper, by applying perturbation method to a simple model of these machines, we analytically prove that for this type of nonlinear impulsive system, there exist different switching surfaces, leading to the same equilibrium points (periodic solutions) with different... 

    Dynamic pull-in instability of initially curved microbeams

    , Article ASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009, Lake Buena Vista, FL, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 113-118 ; 9780791843857 (ISBN) Moghimi Zand, M ; Ahmadian, M. T ; Rashidian, B ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    In this study, dynamic pull-in instability and snap-through buckling of initially curved microbeams are investigated. The microbeams are actuated by suddenly applied electrostatic force. A finite element model is developed to discretize the governing equations and Newmark time discretization is employed to solve the discretized equations. The static pull-in behavior is investigated to validate the model. The results of the finite element model are compared with finite difference solutions and their convergence is examined. In addition, the influence of different parameters on dynamic pull-in instability and snap-through buckling is explored  

    A switching decentralized and distributed extended Kalman filter for pressure swing adsorption processes

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 48 , 2016 , Pages 23042-23056 ; 03603199 (ISSN) Fakhroleslam, M ; Fatemi, S ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A continuous-discrete Distributed and Decentralized Switching Kalman Filter (DDSKF) is designed for estimation of spatial profiles in Pressure Swing Adsorption (PSA) processes. The introduced observer is an integral part of the control strategy of hybrid systems in general and PSA systems in particular. A reduced order model is developed based on the mechanistic model of the process. The sensors are optimally located and observability of the process is studied. The proposed observer is used to estimate the spatial profiles of various states of a two-bed, six-step PSA system used for production of pure H2 from a H2–CH4 gas mixture. The spatial profiles of the system have been estimated using... 

    Application of homotopy analysis method in studying dynamic pull-in instability of microsystems

    , Article Mechanics Research Communications ; Volume 36, Issue 7 , 2009 , Pages 851-858 ; 00936413 (ISSN) Moghimi Zand, M ; Ahmadian, M. T ; Sharif University of Technology
    2009
    Abstract
    In this study, homotopy analysis method is used to derive analytic solutions to predict dynamic pull-in instability of electrostatically-actuated microsystems. The model considers midplane stretching, initial stress, distributed electrostatic force and fringing fields effect. Influences of different parameters on dynamic pull-in instability are investigated. Results are in good agreement with numerical and experimental findings. © 2009 Elsevier Ltd. All rights reserved