Loading...
Search for: synthesized-powder
0.01 seconds

    An investigation on mechanical properties of Alumina-Zirconia-Magnesia spinel composite ceramics fabricated by gel-casting using solution combustion synthesized powder

    , Article Materials Science and Engineering A ; Volume 587 , 2013 , Pages 336-343 ; 09215093 (ISSN) Khoshkalam, M ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    Addition of spinel (MgAl2O4) to Al2O3-ZrO2 composite inhibits alumina grain growth and produces phase boundaries that leads to formation of a ceramic matrix composite with special mechanical properties such as high temperature superplastic deformation. However, the room temperature mechanical properties of Alumina-zirconia-magnesia spinel composite (AZM) such as fracture toughness were rarely investigated by researchers. In this research the AZM nanocomposite powders were synthesized via the solution combustion method. The dense AZM composite samples were fabricated through gelcasting process. Phase analysis studies were performed on both powder and sintered samples and the effects of spinel... 

    Effect of Zirconia Content and Powder Processing on Mechanical Properties of Gelcasted ZTA Composite

    , Article Transactions of the Indian Ceramic Society ; Volume 72, Issue 3 , May , 2013 , Pages 175-181 ; 0371750X (ISSN) Khoshkalam, M ; Faghihi Sani, M. A ; Nojoomi, A ; Sharif University of Technology
    2013
    Abstract
    Addition of fine zirconia particles in the alumina matrix in order to produce ZTA composite is a well-known method for improving the mechanical properties of alumina ceramics such as flexural strength and fracture toughness. Increasing homogeneity and reducing alumina grain size are two key factors for achieving proper mechanical properties in this ceramic matrix composite. In this work two batches of ZTA powder precursor were prepared through mixing of alumina and zirconia by ball milling and in situ synthesis of ZTA composite via solution combustion method. The bending strength testing samples were fabricated through gel-casting process. The effects of different powder processing methods... 

    Enhancement of efficient Ag-S/TiO2 nanophotocatalyst for photocatalytic degradation under visible light

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 23 , 2014 , Pages 9578-9586 ; ISSN: 08885885 Feilizadeh, M ; Vossoughi, M ; Zakeri, S. M. E ; Rahimi, M ; Sharif University of Technology
    Abstract
    A new photocatalyst (Ag-S/PEG/TiO2) was synthesized by adding polyethylene glycol (PEG) to an efficient Ag-S/TiO2 photocatalyst, to obtain a photocatalyst that is highly active under visible light. In addition to Ag-S/PEG/TiO2, Ag-S/TiO2 and pure TiO2 were prepared to compare their properties and activities. Specifically, the morphologies and microstructures of the nanophotocatalysts were characterized by means of powder X-ray diffraction (XRD), N2 adsorption-desorption measurements, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy,... 

    Synthesis and spectral properties of Nd-doped glass-ceramics in SiO 2-CaO-MgO system prepared by sol-gel method

    , Article Journal of Rare Earths ; Volume 31, Issue 6 , 2013 , Pages 595-599 ; 10020721 (ISSN) Masoud, E ; Zohreh, H ; Ali, N ; Sharif University of Technology
    2013
    Abstract
    SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd 3+ were synthesized with sol-gel method. Tetraethylorthosilicate (TEOS), Ca(NO3)2·4H2O, Mg(NO 3)2·6H2O, Nd(NO3) 3·6H2O, ethanol, distilled water, and HNO 3 were used as starting materials. The synthesized powder's properties were examined with simultaneous thermal analysis (STA), X-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM) analysis. The STA curves showed that the softening point and crystallization temperatures were shifted to higher temperatures with increasing dopant content. Regarding XRD patterns of glass samples, Nd was found to act as an intermediate oxide in glass matrix. The XRD... 

    Protection of titanium metal by nanohydroxyapatite coating with zirconia and alumina second phases

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Volume 48, Issue 6 , 2012 , Pages 688-691 ; 20702051 (ISSN) Family, R ; Solati Hashjin, M ; Nik, S. N ; Nemati, A ; Sharif Universty of Technology
    2012
    Abstract
    In this study hydroxyapatite (HA)/zirconia/alumina composite coatings on titanium metal was carried out using Sol-Gel dip coating and calcination process. Hydroxyapatite-Alumina-Zirconia sol, coated samples in three processes by changing final sol stirring time, aging time, calcination temperature of synthesized powder and prepared coating and rate of coating. Some parts of prepared sol were also synthesized and became powder in all three processes. Scanning electron microscopy was used to estimate the particle size of the surface and for morphological analysis. The functional group and crystallization characteristics of the powders were analyzed using (FTIR) and X-Ray diffraction (XRD).... 

    Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method

    , Article Ultrasonics Sonochemistry ; Volume 19, Issue 4 , 2012 , Pages 841-845 ; 13504177 (ISSN) Mohseni Meybodi, S ; Hosseini, S. A ; Rezaee, M ; Sadrnezhaad, S. K ; Mohammadyani, D ; Sharif University of Technology
    2012
    Abstract
    A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide... 

    Development of block copolymer-templated crack-free mesoporous anatase-TiO2 film: tailoring sol–gel and EISA processing parameters and photovoltaic characteristics

    , Article Journal of Materials Science: Materials in Electronics ; Volume 26, Issue 3 , March , 2015 , Pages 1543-1553 ; 09574522 (ISSN) Mozaffari, N ; Mohammadi, M. R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A new facile strategy for preparation of mesoporous anatase-TiO2 films by a combination of sol–gel and evaporation-induced self-assembly (EISA) processes aided by tri-block Pluronic F127 is reported. Two major parameters, sol preparation and EISA processing parameters, are identified for preparation of mesoporous crack-free films with desired thickness. The mesoporous crack-free films with thickness of 650 nm can be obtained with low water: precursor molar ratio (e.g., 2.5:1) under aging in 10 % relative humidity for 72 h at the low temperature of 5 °C. Although template: precursor molar ratio and annealing temperature show little influence on preparation of crack-free films the optimum... 

    Mixed-phase TiO2 nanoparticles preparation using sol-gel method

    , Article Journal of Alloys and Compounds ; Volume 478, Issue 1-2 , 2009 , Pages 586-589 ; 09258388 (ISSN) Mahshid, S ; Askari, M ; Sasani Ghamsari, M ; Afshar, N ; Lahuti, S ; Sharif University of Technology
    2009
    Abstract
    Biphase TiO2 nanoparticles have been prepared by sol-gel method. Water/titanium molar ratio (r) has been used to control the hydrolysis and condensation of titanium isopropoxide in solution producing titanium oxide with two different polymorphs. The influence of crystallite size and morphology of prepared TiO2 on the phase transformation of the resultant materials has been investigated. Synthesized powders were characterized by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Different trends can be observed in the phase transformation and particle growth of the prepared titanium oxide nanomaterial. It was concluded that, the rate of particle... 

    Processing study of gel-cast tubular porous NiO/SDC composite materials from gel-combustion synthesized nanopowder

    , Article Journal of Sol-Gel Science and Technology ; Volume 97, Issue 3 , 2021 , Pages 581-592 ; 09280707 (ISSN) Oveisi, S ; khakpour, Z ; Faghihi sani, M. A ; Kazemzad, M ; Sharif University of Technology
    Springer  2021
    Abstract
    In the present research, NiO–SDC (Samarium doped Ceria) nanopowder was synthesized through sol–gel combustion method using citric acid as a reducing agent (fuel) and metal nitrates as an oxidant. The characteristics of the synthesized powder were thoroughly analyzed by DTA/TG, XRD, BET and FESEM/EDX. Tubular gel-casted porous specimens of NiO–SDC (50:50 wt%) composite materials were produced after stabilizing suspensions of composite powder in an aqueous environment by addition of 3 wt% dispersant and 2.5 wt% agar as the gel builder. The effect of Dolapix CE64 as a dispersant, agar as a gel-builder and the amount of solid loadings on the processing and properties of porous ceramics was... 

    An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route

    , Article Materials Research Bulletin ; Volume 47, Issue 11 , 2012 , Pages 3586-3591 ; 00255408 (ISSN) Aminzare, M ; Amoozegar, Z ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The synthesis of nano-sized CeO 2 powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, Brunner-Emmett-Teller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 °C. According to the results, milling time and calcination temperatures induce... 

    Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs)

    , Article Key Engineering Materials, 6 November 2011 through 9 November 2011 ; Volume 493-494 , November , 2012 , Pages 902-908 ; 10139826 (ISSN) ; 9783037852552 (ISBN) Fayyazbakhsh, F ; Solati Hashjin, M ; Shokrgozar, M. A ; Bonakdar, S ; Ganji, Y ; Mirjordavi, N ; Ghavimi, S. A ; Khashayar, P ; Sharif University of Technology
    2012
    Abstract
    Bone Tissue Engineering (BTE) composed of three main parts: scaffold, cells and signaling factors. Several materials and composites are suggested as a scaffold for BTE. Biocompatibility is one of the most important property of a BTE scaffold. In this work synthesis of a novel nanocomposite including layered double hydroxides (LDH) and gelatin is carried out and its biological properties were studied. The co-precipitation (pH=11) method was used to prepare the LDH powder, using calcium nitrate, Magesium nitrate and aluminum nitrate salts as starting materials. The resulted precipitates were dried. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron... 

    Preparation and characterization of nanocrystalline and mesoporous strontium titanate thin films at room temperature

    , Article Journal of Coatings Technology Research ; Volume 8, Issue 5 , July , 2011 , Pages 585-593 ; 15470091 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    The low temperature perovskite-type strontium titanate (SrTiO 3) thin films and powders with nanocrystalline and mesoporous structure were prepared by a straightforward particulate sol-gel route. The prepared sol had a narrow particle size distribution with hydrodynamic diameter of about 17 nm. X-ray diffraction (XRD) revealed that the synthesized powders had a perovskite-SrTiO 3 structure with preferable orientation growth along the (1 0 0) direction. TEM images showed that the average crystallite size of the powders annealed in the range 300-800°C was around 8 nm. FE-SEM analysis and AFM images revealed that the deposited thin films had mesoporous and nanocrystalline structure with the... 

    Characterization of LiCoO2 nanopowders produced by sol-gel processing

    , Article Journal of Nanomaterials ; Volume 2010 , 2010 ; 16874110 (ISSN) Asgari, S ; Soltanmohammad, S ; Sharif University of Technology
    2010
    Abstract
    LiCoO2 nanopowders, one of the most important cathode materials for lithium-ion batteries, were synthesized via a modified sol-gel process assisted with triethanolamine (TEA) as a complexing agent. The influence of three different chelating agents including acrylic acid, citric acid, and oxalic acid on the size and morphology of particles was investigated. Structure and morphology of the synthesized powders were characterized by thermogravimetric/ differential thermal analyses (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results indicate that the powder processed with TEA and calcinated at 800 °C had an excellent hexagonal ordering of α-NaFeO2 -type (space... 

    Hydrothermal synthesis of aligned Hydroxyapatite nanorods with ultra-high crystallinity

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 109-116 ; 1728-144X (ISSN) Manafi, S ; Rahimipour, M. R ; Yazdani, B ; Sadrnezhaad, S. K ; Amin, M. H ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH 3(CH2)15N+(CH3) 3Br-) was designated as CTAP)/Ca(NO3) 2/ (NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystal HAp nanorods with diameter of 20 ± 10 nm and length of 80 ± 20 nm, was introduced. Crystal phases were determined by X-ray diffraction (XRD). Scanning electron microscope (SEM) was applied to investigate the morphology. The microstructure of the HAp products were further observed by transmission electron microscope (TEM) and high... 

    Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1614-1622 ; 10263098 (ISSN) Gozalian, A ; Behnamghader, A ; Daliri, M ; Moshkforoush, A ; Sharif University of Technology
    Abstract
    The aim of this study was to investigate the thermal behavior of Mg-doped calcium phosphate compounds. Nanocrystalline HA and β-TCP mixtures containing different magnesium contents were synthesized via an alkoxide sol gel method. The ratio of (Ca+Mg)P was kept constant at 1.67, and the Mg content ranged between 0 and 3 mol%. The influence of magnesium on the phase composition, chemical structure, thermal behavior and morphological characteristics of nanopowders was analyzed using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Simultaneous Thermogravimetry and Differential Thermal Analysis (STA/DTA), Scanning Electron Microscopy (SEM) and Transmission Electron... 

    Mesoporous and nanocrystalline sol-gel derived NiTiO3 at the low temperature: Controlling the structure, size and surface area by Ni:Ti molar ratio

    , Article Solid State Sciences ; Volume 12, Issue 9 , 2010 , Pages 1629-1640 ; 12932558 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline nickel titanate (NiTiO3) thin films and powders with mesoporous structure were produced at the low temperature of 500 °C by a straightforward particulate sol-gel route. The sols were prepared in various Ni:Ti molar ratios. X-ray diffraction and Fourier transform infrared spectroscopy revealed that the powders contained mixtures of the NiTiO 3 and NiO phases, as well as the anatase-TiO2 and the rutile-TiO2 depending on the annealing temperature and Ni:Ti molar ratio. Moreover, it was found that Ni:Ti molar ratio influences the preferable orientation growth of the nickel titanate, being on (202) planes for the nickel dominant powders (Ni:Ti ≥ 75:25) and on (104) planes for the... 

    Low temperature nanostructured lithium titanates: Controlling the phase composition, crystal structure and surface area

    , Article Journal of Sol-Gel Science and Technology ; Volume 55, Issue 1 , 2010 , Pages 19-35 ; 09280707 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Low temperature lithium titanate compounds (i.e., Li4Ti 5O12 and Li2TiO3) with nanocrystalline and mesoporous structure were prepared by a straightforward aqueous particulate sol-gel route. The effect of Li:Ti molar ratio was studied on crystallisation behaviour of lithium titanates. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders were crystallised at the low temperature of 500 °C and the short annealing time of 1 h. Moreover, it was found that Li:Ti molar ratio and annealing temperature influence the preferable orientation growth of the lithium titanate compounds. Transmission electron microscope (TEM) images showed that the average... 

    Synthesis and characterisation of nanostructured neodymium titanium oxides by sol-gel process: Controlling the phase composition, crystal structure and grain size

    , Article Materials Chemistry and Physics ; Volume 122, Issue 2-3 , 2010 , Pages 512-523 ; 02540584 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline neodymium titanium oxide thin films and powders with different phase compositions with mesoporous structure were produced by a straightforward particulate sol-gel route. The sols were prepared in various Nd:Ti molar ratios and they showed a narrow particle size distribution in the range 20-26 nm. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders contained mixtures of Nd4Ti9O24, Nd2Ti4O11, Nd3Ti4O12 for titanium dominant powders (Nd:Ti ≤ 45:60), mixtures of Nd2TiO5 and Nd2O3 for neodymium dominant powders (Nd:Ti ≥ 75:25) and pure Nd3Ti4O12 phase for equal molar ratio of Nd:Ti, depending on the annealing temperature and Nd:Ti...