Loading...
Search for: tap-water
0.011 seconds

    Investigation of water electrical parameters as a function of measurement frequency using cylindrical capacitive sensors

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 46, Issue 1 , 2013 , Pages 305-314 ; 02632241 (ISSN) Golnabi, H ; Sharifian, M ; Sharif University of Technology
    2013
    Abstract
    In this study electrical properties of different water liquids at frequency range of 100-2000 Hz are investigated by using the short invasive and non-invasive cylindrical capacitive sensors (CCSs). Operation of the capacitance measurement module for such probes is based on the auto balancing bridge method. Comparison of the measured capacitances and measured resistances for different water liquids shows decrease by increasing the frequency. In another study the dielectric constant of distilled water, mineral water, tap water and salt water are measured. The effects of the frequency on the resistivity, permittivity and conductance of the different water liquids are also investigated  

    Monitoring temperature variation of reactance capacitance of water using a cylindrical cell probe

    , Article Journal of Applied Sciences ; Volume 9, Issue 4 , 2009 , Pages 752-758 ; 18125654 (ISSN) Behzadi, G ; Golnabi, H ; Sharif University of Technology
    2009
    Abstract
    In this study by using a capacitive cell probe the temperature variation of the electrical properties of the water liquids is investigated. Variation of the reactance capacitance parameter of liquids with temperature in the range of 17-60°C is measured for the plain water and water mixtures. The temperature variations of the capacitance for the cool distilled and tap water samples are studied for the range of 17-29°C obtained. Present results indicate an averaged variation of 4.69 μF/°C for the distilled water and 3.24 μF/°C for tap water in warm up process to a near room temperature. The cooling behaviors for the warm mineral, tap and salt water liquids are also investigated in this study.... 

    Magnetic nanoparticle-based micro-solid phase extraction and GC-MS determination of oxadiargyl in aqueous samples

    , Article Chromatographia ; Volume 74, Issue 5-6 , 2011 , Pages 483-488 ; 00095893 (ISSN) Bagheri, H ; Zandi, O ; Aghakhani, A ; Sharif University of Technology
    Abstract
    A new facile, rapid, inexpensive, and sensitive method based on magnetic micro-solid phase extraction (M-μ-SPE) coupled to gas chromatography-mass spectrometry (GC-MS) was developed for determination of the herbicide oxadiargyl in environmental water samples. The feasibility of employing non-modified magnetic nanoparticles (MNPs) as sorbent was examined and applied to perform the extraction process. Influential parameters affecting the extraction efficiency along with desorption conditions were investigated and optimized. The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) of the method under optimized conditions were 0.005 and 0.030 ng mL-1, respectively. The... 

    Comparison of invasive and non-invasive cylindrical capacitive sensors for electrical measurements of different water solutions and mixtures

    , Article Sensors and Actuators, A: Physical ; Volume 167, Issue 2 , June , 2011 , Pages 359-366 ; 09244247 (ISSN) Behzadi, G ; Golnabi, H ; Sharif University of Technology
    2011
    Abstract
    In this study design and operation of invasive and non-invasive cylindrical capacitive sensor (CCS) designs for the electrical measurements of water, water solutions, and water mixtures are reported. Operation of the capacitance measurement module for such probes is based on the charge/discharge method. The measured capacitances and resistances for distilled water, mineral water, tap water and salt water samples are reported by using two sensor types and results are compared. The measured capacitance by invasive CCS for distilled water is about 2.28 μF and by non-invasive CCS is 31.40 pF, which shows a big difference for different probes. Such a difference is due to the electrical... 

    Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    , Article Analytica Chimica Acta ; Volume 713 , 2012 , Pages 63-69 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Sharif University of Technology
    2012
    Abstract
    A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography-mass spectrometry (GC-MS). Various parameters affecting the extraction and... 

    Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating

    , Article Journal of Chromatography A ; Volume 1375 , 2015 , Pages 8-16 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In the present work, the roles of inorganic oxide nanoparticles on the extraction efficiency of polyethylene terephthalate-based nanocomposites were extensively studied. Four fiber coatings based on polyethylene terephthalate nanocomposites containing different types of nanoparticles along with a pristine polyethylene terephthalate polymer were conveniently electrospun on stainless steel wires. The applicability of new fiber coatings were examined by headspace-solid phase microextraction of some environmentally important volatile organic compound such as benzene, toluene, ethylbenzene and xylene (BTEX), as model compounds, from aqueous samples. Subsequently, the extracted analytes were... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples.... 

    The geometrical characteristics of nickel-based metal organic framework on its entrapment capability

    , Article Journal of Chromatography A ; Volume 1610 , 2020 Javanmardi, H ; Abbasi, A ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Here, a three dimensional nickel–based metal organic framework (MOF) was synthesized via solvothermal and room temperature protocols. In order to study the effects of the synthesis conditions on the physical properties such as pore sizes and shapes of the prepared MOFs, their extraction capabilities were examined. Both MOFs were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and thermogravimetric analyses. Brilliant properties such as porous structure, high surface area and considerable thermal stability make them reasonable candidates to be employed as efficient extractive phases. The efficiency of the...