Loading...
Search for:
tau-protein
0.005 seconds
Computational Modeling of Axonal Microtubule and Study the Effect of Cytoplasm on It under the Tension
, M.Sc. Thesis Sharif University of Technology ; Shamloo, Amir (Supervisor)
Abstract
Axon is an important part of the neuronal cells and axonal microtubules are bundles in axons.In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded filamentous protein in the central nervous system. These proteins are responsible for cross-linking axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed between nearby microtubules creating bundles. Formation of bundles of microtubules causes their transverse reinforcement and has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances such as in...
Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties
, Article Engineering with Computers ; 2020 ; Habibi, M ; Tounsi, A ; Safarpour, H ; Safa, M ; Sharif University of Technology
Springer
2020
Abstract
The stability analysis of cantilevered curved microtubules in axons regarding various size elements and using the generalized differential quadrature method for solving equations is reported. The impacts of covering MAP Tau proteins along with cytoplasm are taken into account as the elastic medium. Curved cylindrical nanoshell considering thick wall is used to model the microtubules. The factor of length scale (l/R = 0.2) used in modified couple stress theory would result in more accuracy when it comes to comparison with experiments, while alternative theories presented in this paper provide less precise outcomes. Due to the reported precise results, at the lower value of the time-dependent...
A viscoelastic model for axonal microtubule rupture
, Article Journal of Biomechanics ; Volume 48, Issue 7 , 2015 , Pages 1241-1247 ; 00219290 (ISSN) ; Manuchehrfar, F ; Rafii Tabar, H ; Sharif University of Technology
Elsevier Ltd
2015
Abstract
Axon is an important part of the neuronal cells and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded filamentous protein in the central nervous system. These proteins are responsible for cross-linking axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed between nearby microtubules creating bundles. Formation of bundles of microtubules causes their transverse reinforcement and has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances during...
Review on alzheimer's disease: inhibition of amyloid beta and tau tangle formation
, Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 382-394 ; 01418130 (ISSN) ; Hadi Zadeh, E ; Hasan Khan, R ; Sharif University of Technology
Elsevier B.V
2021
Abstract
It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation,...
Polymeric nanoparticles for nasal drug delivery to the brain: relevance to alzheimer's disease
, Article Advanced Therapeutics ; Volume 4, Issue 3 , 2021 ; 23663987 (ISSN) ; Ahmadi, S ; Afshari, R ; Khalaji, S ; Rabiee, M ; Bagherzadeh, M ; Fatahi, Y ; Dinarvand, R ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Webster, T. J ; Sharif University of Technology
Blackwell Publishing Ltd
2021
Abstract
Currently, Alzheimer's disease (AD) accounts for more than half of all dementia cases. Although genetics, age, and environmental factors affect the disease, the cause of AD is not yet fully known. Various drugs have been proposed for the prevention and treatment of AD, but the delivery of these therapeutic agents to the brain is difficult. The blood–brain barrier prevents systemic drugs from accessing the central nervous system and designing a suitable system to overcome this barrier has attracted much attention. The intranasal pathway, given its proximity to the brain, provides a great opportunity for drug delivery. Understanding the physiological characteristics of the nose can be useful...