Loading...
Search for: taylor-series
0.006 seconds

    A new iterative position finding algorithm based on Taylor series expansion

    , Article 2011 19th Iranian Conference on Electrical Engineering, ICEE 2011, 17 May 2011 through 19 May 2011 ; May , 2011 , Page(s): 1 ; 9789644634284 (ISBN) Soltanian, M ; Pezeshk, A. M ; Mahdavi, A ; Dallali, M ; Sharif University of Technology
    2011
    Abstract
    This paper deals with the problem of estimating the position of emitters using only direction of arrival information. We propose an improvement of newly developed algorithm for position finding of a stationary emitter called sensitivity analysis. The proposed method uses Taylor series expansion iteratively to enhance the estimation of the emitter location and reduce position finding error. Simulation results show that our proposed method makes a great improvement on accuracy of position finding with respect to sensitivity analysis method  

    Adomian Decomposition Method for Solving Differential Equations and Its Convergence

    , M.Sc. Thesis Sharif University of Technology Katebzadeh, Mojtaba (Author) ; Fotouhi Firouzabad, Morteza (Supervisor)
    Abstract
    In¬¬ this thesis we review adomian decomposition method in solving differential equations.First described the technique and then we will introduce two ways to obtain adomian polynomials.In the next section to ompare two methods of adomian decomposition and Taylor series with two examples, we will solve an example and compared decomposition method with the Picard method and finally using Cauchy-Kowalewski Theorm Convergence of answer Series shown and it will present a rate of convergence  

    Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives

    , Article Computers and Mathematics with Applications ; Volume 61, Issue 2 , 2011 , Pages 482-498 ; 08981221 (ISSN) Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2011
    Abstract
    Several schemes for discretization of first and second derivatives are available in Smoothed Particle Hydrodynamics (SPH). Here, four schemes for approximation of the first derivative and three schemes for the second derivative are examined using a theoretical analysis based on Taylor series expansion both for regular and irregular particle distributions. Estimation of terms in the truncation errors shows that only the renormalized (the first-order consistent) scheme has acceptable convergence properties to approximate the first derivative. None of the second derivative schemes has the first-order consistency. Therefore, they converge only when the particle spacing decreases much faster than... 

    Effect of size on the chaotic behavior of nano resonators

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 44 , 2017 , Pages 495-505 ; 10075704 (ISSN) Alemansour, H ; Miandoab, E. M ; Nejat Pishkenari, H ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Present study is devoted to investigate the size effect on chaotic behavior of a micro-electro-mechanical resonator under external electrostatic excitation. Using Galerkin's decomposition method, approximating the actuation force with a new effective lumped model, and neglecting higher order terms in the Taylor-series expansion, a simplified model of the main system is developed. By utilizing the Melnikov's method and based on the new form of the electrostatic force, an expression in terms of the system parameters is developed which can be used to rapidly estimate the chaotic region of the simplified system. Based on the analysis of the simple proposed model, it is shown that the effect of... 

    Design and analysis of a 3-link micro-manipulator actuated by piezoelectric layers

    , Article Mechanism and Machine Theory ; Volume 112 , 2017 , Pages 43-60 ; 0094114X (ISSN) Ahmadian, M. T ; Jafarishad, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The purpose of this paper is to design and analyze a 3-link micro-device proposed as a micro-manipulator. This micro-manipulator includes 3 micro-beams as links connected to one another with no conventional or flexural joints. While the structure of the micro-manipulator is monolithic, end-effector workspace is achieved through deflection of links which is actuated by piezoelectric layers. By combining static analysis of the links through a multilayer piezoelectric beam model and kinematic analysis of the micro-manipulator, inverse kinematic has been solved utilizing the Taylor series expansion technique and the perturbation method. The obtained results through the present model reveal that... 

    Separation of nonlinearly mixed sources using end-to-end deep neural networks

    , Article IEEE Signal Processing Letters ; Volume 27 , 2020 , Pages 101-105 Zamani, H ; Razavikia, S ; Otroshi-Shahreza, H ; Amini, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this letter, we consider the problem of blind source separation under certain nonlinear mixing conditions using a deep learning approach. Conventionally, the separation of sources within linear mixtures is achieved by applying the independence property of the sources. In the nonlinear regime, however, this property is no longer sufficient. In this letter, we consider nonlinear mixing operators where the non-linearity could be fairly approximated using a Taylor series. Next, for solving the nonlinear BSS problem, we design an end-to-end recurrent neural network (RNN) that learns the inverse of the system, and ultimately separates the sources. For training the RNN, we employ a set of... 

    Half-band FIR fractional delay filters with closed-form coefficient formulas and modular implementation based on Lagrange interpolators

    , Article Signal Processing ; Volume 88, Issue 12 , 2008 , Pages 2913-2916 ; 01651684 (ISSN) Jahani Yekta, M. M ; Sharif University of Technology
    2008
    Abstract
    The Taylor series-based representation of the maximally flat (MF) FIR fractional delay (FD) filter is manipulated to obtain a FD filter with a wider band-width. The band-width of the proposed filter can approach π / 2 rads / s, which is 1.5 times that of the prototype one. The design has closed-form coefficient formulas as well as a modular implementation. These two properties make it a practically favourable one. © 2008 Elsevier B.V. All rights reserved  

    A new model for estimation of the critical properties of alkanes

    , Article Theoretical Foundations of Chemical Engineering ; Volume 39, Issue 1 , 2005 , Pages 78-80 ; 00405795 (ISSN) Pazuki, G. R ; Mokhatab, S ; Jahanshahi, V ; Sharif University of Technology
    2005
    Abstract
    A simple model is proposed to estimate the critical properties of alkanes-temperature, pressure, and volume. This model is dependent on normal boiling and molecular weight of hydrocarbons. The model has been expanded based on a Taylor series in the form of a polynomial function of normal boiling. Because methane has the simplest structure among hydrocarbons, this model has been calculated around methane. The coefficients of this model were assumed in the form of a linear function of molecular weight. These parameters can be obtained from regression between experimental results and results from this model. By a comparison of this model and previous models, it is shown that this model is... 

    Cepstral-domain HMM-based speech enhancement using vector Taylor series and parallel model combination

    , Article 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012, 2 July 2012 through 5 July 2012 ; July , 2012 , Pages 298-303 ; 9781467303828 (ISBN) Veisi, H ; Sameti, H ; Sharif University of Technology
    2012
    Abstract
    Speech enhancement problem using hidden Markov model (HMM) and minimum mean square error (MMSE) in cepstral domain is studied. This noise reduction approach can be considered as weighted-sum filtering of the noisy speech signal in which the filters weights are estimated using the HMM of noisy speech. To have an accurate estimation of the noisy speech HMM, vector Taylor series (VTS) is proposed and compared with the parallel model combination (PMC) technique. Furthermore, proposed cepstral-domain HMM-based speech enhancement systems are compared with the renowned autoregressive HMM (AR-HMM) approach. The evaluation results confirm the superiority of the cepstral domain approach in comparison... 

    Nonlinear sampling for sparse recovery

    , Article International Conference on Sampling Theory and Applications, SampTA 2015 ; 2015 , Pages 163-167 ; 9781467373531 (ISBN) Hosseini, S. A. H ; Barzegar Khalilsarai, M ; Amini, A ; Marvasti, F ; Sharif University of Technology
    Abstract
    Linear sampling of sparse vectors via sensing matrices has been a much investigated problem in the past decade. The nonlinear sampling methods, such as quadratic forms are also studied marginally to include undesired effects in data acquisition devices (e.g., Taylor series expansion up to two terms). In this paper, we introduce customized nonlinear sampling techniques that provide possibility of sparse signal recovery. The main advantage of the nonlinear method over the conventional linear schemes is the reduction in the number of required samples to 2k for recovery of k-sparse signals. We also introduce a low-complexity reconstruction method similar to the annihilating filter in the... 

    Approximateml estimator for compensation of timing mismatch and jitter noise in Ti-ADCS

    , Article European Signal Processing Conference, 28 August 2016 through 2 September 2016 ; Volume 2016-November , 2016 , Pages 2360-2364 ; 22195491 (ISSN) ; 9780992862657 (ISBN) Araghi, H ; Akhaee, M. A ; Amini, A ; Sharif University of Technology
    European Signal Processing Conference, EUSIPCO  2016
    Abstract
    Time-interleaved analog to digital converters (TI-ADC) offer high sampling rates by passing the input signal through C parallel low-rate ADCs. We can achieve C-times the sampling rate of a single ADC if all the shifts between the channels are identical. In practice, however, it is not possible to avoid mismatch among shifts. Besides, the samples are also subject to jitter noise. In this paper, we propose a blind method to mitigate the joint effects of sampling jitter and shift mismatch in the TI-ADC structure. We assume the input signal to be bandlimited and incorporate the jitter via a stochastic model. Next, we derive an approximate model based on a first-order Taylor series and use an... 

    An adaptive feedback linearization approach to inertial frequency response of wind turbines

    , Article IEEE Transactions on Sustainable Energy ; Volume 8, Issue 3 , 2017 , Pages 916-926 ; 19493029 (ISSN) Toulabi, M ; Dobakhshari, A. S ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Synthetic inertial frequency response has attracted increasing attention due to the paradigm shift in power generation from synchronous generators toward wind turbines. This paper presents a novel nonlinear controller to enable inertial response of a variable speed wind turbine (VSWT). The VSWT has a nonlinear model which cannot efficiently be dealt with by linear control techniques as it may experience large deviations from its operating point during the frequency support period. To design the controller, a nonlinear model for the wind turbine together with power system is utilized. The output power of the wind turbine is expressed in terms of the state variables, and its exact Taylor... 

    A new method for free vibration analysis of nanobeams: Introduction of equivalent lattice stiffness method

    , Article Solid State Communications ; Volume 287 , 2019 , Pages 35-42 ; 00381098 (ISSN) Firouz Abadi, R. D ; Mehralian, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Since the efficiency of non-classical continuum theories is strongly dependent on the recognition of the suitable values of small length scale parameters and there is still uncertainty about them, a novel approach, equivalent lattice stiffness method is developed here. This approach without the characteristic length scale parameter which arises in non-classical continuum theories, such as nonlocal theory and strain gradient theory, is capable to capture size effect more easily and accurately. This method is proposed based on the concept of lattice dynamics but a Taylor series expansion is involved to approximate the displacements of the continuous domain; accordingly, this approach is in... 

    A new method for free vibration analysis of nanobeams: Introduction of equivalent lattice stiffness method

    , Article Solid State Communications ; Volume 287 , 2019 , Pages 35-42 ; 00381098 (ISSN) Firouz Abadi, R. D ; Mehralian, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Since the efficiency of non-classical continuum theories is strongly dependent on the recognition of the suitable values of small length scale parameters and there is still uncertainty about them, a novel approach, equivalent lattice stiffness method is developed here. This approach without the characteristic length scale parameter which arises in non-classical continuum theories, such as nonlocal theory and strain gradient theory, is capable to capture size effect more easily and accurately. This method is proposed based on the concept of lattice dynamics but a Taylor series expansion is involved to approximate the displacements of the continuous domain; accordingly, this approach is in... 

    A nonlinear model predictive controller design for Sheppard-Taylor based PFC rectifier

    , Article IECON Proceedings (Industrial Electronics Conference), 3 November 2009 through 5 November 2009 ; 2009 , Pages 1403-1408 Abedi, M. R ; Tahami, F ; Sharif University of Technology
    Abstract
    This paper addresses a nonlinear model predictive controller design for a single-phase PFC rectifier exploiting the Sheppard-Taylor converter. After approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order, an analytic solution to the MPC is developed and a closed-form nonlinear predictive controller is introduced. The proposed nonlinear model predictive control (NMPC) derived using approximation can stabilize the original nonlinear systems if certain conditions, which can be met by properly choosing predictive times and the order for Taylor expansion, are satisfied. The main advantage of this digital control method is that unity power... 

    Optimum nonlinear model predictive controller design for flyback PFC rectifiers

    , Article ISIEA 2010 - 2010 IEEE Symposium on Industrial Electronics and Applications, 3 October 2010 through 5 October 2010 ; October , 2010 , Pages 70-75 ; 9781424476473 (ISBN) Tahami, F ; Abedi, M. R ; Rezaei, K ; IEEE Malaysia Section; IEEE Malaysia Power Electron. (PEL)/; Ind. Electron.(IE)/ Ind. Appl. (IA) Jt. Chapter ; Sharif University of Technology
    2010
    Abstract
    Single-phase ac-dc Power Factor Correction (PFC) rectifiers have attracted considerable attention in recent years due to the adoption of increasingly stringent power quality regulations. In this paper a nonlinear model predictive controller design for a single-phase Flyback PFC rectifier is presented. After approximation of the tracking error in the receding horizon by its Taylor-series expansion to a specified order, an analytic solution to the model predictive control (MPC) is developed and a closed-loop nonlinear predictive controller is introduced. The main advantage of this digital control method is that unity power factor can be achieved over wide input voltage, load current range and...