Loading...
Search for: telerehabilitation
0.006 seconds

    Nonlinear bilateral adaptive impedance control with applications in telesurgery and telerehabilitation

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Volume 138, Issue 11 , 2016 ; 00220434 (ISSN) Sharifi, M ; Behzadipour, S ; Salarieh, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    A bilateral nonlinear adaptive impedance controller is proposed for the control of multi-degrees-of-freedom (DOF) teleoperation systems. In this controller, instead of conventional position and/or force tracking, the impedance of the nonlinear teleoperation system is controlled. The controller provides asymptotic tracking of two impedance models in Cartesian coordinates for the master and slave robots. The proposed bilateral controller can be used in different medical applications, such as telesurgery and telerehabilitation, where the impedance of the robot in interaction with human subject is of great importance. The parameters of the two impedance models can be adjusted according to the... 

    Cooperative modalities in robotic tele-rehabilitation using nonlinear bilateral impedance control

    , Article Control Engineering Practice ; Volume 67 , 2017 , Pages 52-63 ; 09670661 (ISSN) Sharifi, M ; Behzadipour, S ; Salarieh, H ; Tavakoli, M ; Sharif University of Technology
    Abstract
    A nonlinear model reference adaptive bilateral impedance controller is proposed that can accommodate various cooperative tele-rehabilitation modes for patient–therapist interaction using a multi-DOF tele-robotic system. In this controller, two reference impedance models are implemented for the master and slave robots using new model reference adaptive control laws for the nonlinear bilateral teleoperation system. “Hand-over-hand” and “adjustable-flexibility” are two modes of patient–therapist cooperation that are realized using the proposed strategy. The Lyapunov-based stability proof guarantees the patient's and the therapist's safety during the cooperation and interaction with robots, even... 

    Assist-as-needed policy for movement therapy using telerobotics-mediated therapist supervision

    , Article Control Engineering Practice ; Volume 101 , 2020 Sharifi, M ; Behzadipour, S ; Salarieh, H ; Tavakoli, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a new impedance-based teleoperation strategy is proposed for assist-as-needed tele-rehabilitation via a multi-DOF telerobotic system having patient–master and therapist–slave interactions. Unlike a regular teleoperation system and as the main contribution of this work to minimize the therapist's movements, the therapist's hand only follows the patient's deviation from the target trajectory. Also it provides a better perception of the patient's problems in motor control to the therapist The admissible deviation of the patient's limb from a reference target trajectory is governed by an impedance model responding to both patient's and therapist's interaction forces. As the other... 

    A new scheme for the development of IMU-based activity recognition systems for telerehabilitation

    , Article Medical Engineering and Physics ; Volume 108 , 2022 ; 13504533 (ISSN) Nasrabadi, A. M ; Eslaminia, A. R ; Bakhshayesh, P. R ; Ejtehadi, M ; Alibiglou, L ; Behzadipour, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Wearable human activity recognition systems (HAR) using inertial measurement units (IMU) play a key role in the development of smart rehabilitation systems. Training of a HAR system with patient data is costly, time-consuming, and difficult for the patients. This study proposes a new scheme for the optimal design of HARs with minimal involvement of the patients. It uses healthy subject data for optimal design for a set of activities used in the rehabilitation of PD1 patients. It maintains its performance for individual PD subjects using a single session data collection and an adaptation procedure. In the optimal design, several classifiers (i.e. NM, k-NN, MLP with RBF as a hidden layer, and... 

    The effects of supervised and non-supervised upper limb virtual reality exercises on upper limb sensory-motor functions in patients with idiopathic Parkinson's disease

    , Article Human Movement Science ; Volume 85 , 2022 ; 01679457 (ISSN) Hashemi, Y ; Taghizadeh, G ; Azad, A ; Behzadipour, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Background: Impairments of upper limb (UL) sensory-motor functions are common in Parkinson's disease (PD). Virtual reality exercises may improve sensory-motor functions in a safe environment and can be used in tele-rehabilitation. This study aimed to investigate the effects of supervised and non-supervised UL virtual reality exercises (ULVRE) on UL sensory-motor functions in patients with idiopathic PD. Methods: In this clinical trial study, 45 patients with idiopathic PD (29 male) by mean ± SD age of 58.64 ± 8.69 years were randomly allocated to either the control group (conventional rehabilitation exercises), supervised ULVRE or non-supervised ULVRE. Interventions were 24 sessions, 3...