Loading...
Search for: temporal-control
0.007 seconds

    Ion pump based bio-synthetic modulator model for diffusive molecular communications

    , Article 17th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2016, 3 July 2016 through 6 July 2016 ; Volume 2016-August , 2016 ; 9781509017492 (ISBN) Arjmandi, H. R ; Jamali, V ; Ahmadzadeh, A ; Burkovski, A ; Schober, R ; Nasiri Kenari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In diffusive molecular communication (DMC), the transmitter has to be able to control the release of signaling molecules for modulation of the information bits. In natural cells, pumping ions is an important control mechanism for releasing molecules which is carried out by ion pumps embedded in the membrane. The activity of the ion pumps is controlled by a driving parameter. In particular, light driven pumps are controlled by light intensity and enable a high degree of spatial and temporal control for modulation functionality. In this paper, a modulator based on ion pumps is proposed for DMC which controls the release rate of the molecules from the transmitter by modulating a light intensity... 

    Stimulus-responsive sequential release systems for drug and gene delivery

    , Article Nano Today ; Volume 34 , 2020 Ahmadi, S ; Rabiee, N ; Bagherzadeh, M ; Elmi, F ; Fatahi, Y ; Farjadian, F ; Baheiraei, N ; Nasseri, B ; Rabiee, M ; Tavakoli Dastjerd, N ; Valibeik, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive...