Loading...
Search for: temporal-derivatives
0.005 seconds

    A high-order nodal discontinuous galerkin method for solution of compressible non-cavitating and cavitating flows

    , Article Computers and Fluids ; Volume 156 , 2017 , Pages 175-199 ; 00457930 (ISSN) Hejranfar, K ; Hajihassanpour, M ; Sharif University of Technology
    Abstract
    In this work, a high-order nodal discontinuous Galerkin method is applied and assessed for the simulation of compressible non-cavitating and cavitating flows. The one-fluid approach with the thermal effects is used to properly model the cavitation phenomenon. Here, the spatial and temporal derivatives in the system of governing equations are discretized using the nodal discontinuous Galerkin method and the third-order TVD Runge–Kutta method, respectively. Various numerical fluxes such as the Roe, Rusanov, HLL, HLLC and AUSM+-up and two discontinuity capturing methods, namely, the generalized MUSCL limiter and a generalized exponential filter are implemented in the solution algorithm. At... 

    Dynamic instability characteristics of advanced grid stiffened conical shell with laminated composite skins

    , Article Journal of Sound and Vibration ; Volume 488 , 2020 Bohlooly, M ; Kouchakzadeh, M. A ; Mirzavand, B ; Noghabi, M ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Dynamical instability characteristics of sandwich truncated conical shell are investigated. The three-layered shell is composed of advanced grid stiffened core and laminated composite skins. The core maybe made of three different fiber paths. The conical shell with simply-supported ends is subjected to two different types of time-dependent axial compressions. The equations of motion and compatibility are derived by considering Kirchhoff-Love assumptions and von Karman relations. The solution procedure is divided to two steps. First, the terms consisting of spatial derivatives are eliminated by applying a stress function and following the Galerkin method. Second, the terms with temporal...