Loading...
Search for: thermal-efficiency
0.005 seconds
Total 24 records

    On the thermal efficiency of power cycles in finite time thermodynamics

    , Article European Journal of Physics ; Volume 37, Issue 5 , 2016 ; 01430807 (ISSN) Momeni, F ; Morad, M. R ; Mahmoudi, A ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    The Carnot, Diesel, Otto, and Brayton power cycles are reconsidered endoreversibly in finite time thermodynamics (FTT). In particular, the thermal efficiency of these standard power cycles is compared to the well-known results in classical thermodynamics. The present analysis based on FTT modelling shows that a reduction in both the maximum and minimum temperatures of the cycle causes the thermal efficiency to increase. This is antithetical to the existing trend in the classical references. Under the assumption of endoreversibility, the relation between the efficiencies is also changed to ηCarnot > ηBrayton > ηDiesel > ηOtto, which is again very different from the corresponding classical... 

    Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid

    , Article Journal of Cleaner Production ; Volume 162 , 2017 , Pages 121-129 ; 09596526 (ISSN) Iranmanesh, S ; Ong, H. C ; Ang, B. C ; Sadeghinezhad, E ; Esmaeilzadeh, A ; Mehrali, M ; Sharif University of Technology
    Abstract
    In this study, the effect of graphene nanoplatelets (GNP)/distilled water nanofluid on the thermal performance of evacuated tube solar collector (ETSC) water heater was experimentally investigated. The mass percentage of GNP was considered at 0.025, 0.5, 0.075 and 0.1 wt%. The physical and thermal properties of the GNP nanofluids including stability, specific heat capacity, viscosity and thermal conductivity were investigated. The thermal efficiency tests on the solar collector were carried out for varying volumetric flow rate of 0.5, 0.1, and 1.5 L/min while the ASHRAE standard 93–2003 was considered to calculate the efficiency of the collector. The results indicated that the solar... 

    Experimental investigation of the effects of corona wind on the performance of an air-cooled PV/T

    , Article Renewable Energy ; Volume 127 , 2018 , Pages 284-297 ; 09601481 (ISSN) Golzari, S ; Kasaeian, A ; Amidpour, M ; Nasirivatan, S ; Mousavi, S ; Sharif University of Technology
    Abstract
    In the present study, enhancing the heat transfer is experimentally investigated by the electro-hydrodynamics (EHD) through a single-pass air-cooled PV/T (Photovoltaic/Thermal System). The corona wind increases the heat transfer coefficient by producing a secondary flow and vortex, and consequently, increases the PV/T system efficiency. The effects of the corona wind are studied by changing the voltage values and the flow rates in the air channel. The results show that the corona wind is effective on enhancing the system performance; so that the heat transfer coefficient increases by 65% in natural flow regime by applying 11 kV voltage in the pilot setup. Totally, the thermal efficiency of... 

    Thermodynamic analysis of a photovoltaic thermal system coupled with an organic Rankine cycle and a proton exchange membrane electrolysis cell

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 41 , 2022 , Pages 17894-17913 ; 03603199 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, the performance of a Photovoltaic Thermal-Organic Rankine Cycle (PVT-ORC) system combined with a Proton Exchange Membrane Electrolysis Cell (PEMEC) is investigated. A combined numerical/theoretical model of the system is developed and used to evaluate the effect of various system design parameters. In addition, the effects of using water, ethylene glycol, and a mixture of water and ethylene glycol (50/50) as the working fluid of the PVT system and R134a, R410a, and R407c as the working fluid of the ORC cycle on the performance of the PVT-ORC-PEMEC system are studied. Based on the results, R134a and water demonstrated the best performance as the working fluid of the ORC and PVT... 

    Photothermally heated and mesh-gridded solar-driven direct contact membrane distillation for high saline water desalination

    , Article International Journal of Heat and Mass Transfer ; Volume 199 , 2022 ; 00179310 (ISSN) Shokrollahi, M ; Asadollahi, M ; Mousavi, S.A ; Rajabi ghahnavieh, A ; Behzadi Sarok, M ; Khayet, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photothermally heated and mesh-gridded membrane distillation (PHMD) system is proposed for desalination of high saline aqueous solutions. A triple-layered membrane, composed of a photothermal top nanofibrous layer containing polyacrylonitrile and dispersed carbon black nanoparticles and a polyvinylidene fluoride porous membrane supported on a nonwoven polyester, was prepared. A polypropylene mesh was used to hold the membrane. A 3D numerical simulation of the PHMD system was carried out by COMSOL and the appropriate length of the membrane module was determined. The effects of various operating parameters including solar radiation intensity on the permeate flux and thermal efficiency were... 

    Film Cooling Computational Simulation of the Trailing Edge a Gas Turbine Blade, Using Quasi-Radial Jets–Impact of Jet Height

    , M.Sc. Thesis Sharif University of Technology Solati, Arya (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Javadi, Khodayar (Supervisor)
    Abstract
    The limitations of metals in tolerating thermal stresses is one of the main obstacles in increasing temperature of combustion products. In addition, strong desires to use higher temperatures than are allowed for metals, have led to use of different cooling methods for protecting surfaces adjacent to hot gases. Previous valid studies show that more than 25% of research in the field of gas turbine is related to their blades cooling. On the other hand, one of the very important methods of cooling such surfaces is film cooling. The results of this and previous researches conducted by the team of this thesis’ supervisors can for instance help designers to predict more suitable positions for... 

    Performance investigation of a four stroke diesel engine, using water-based ferrofluid as an additive

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 4, Issue PARTS A AND B , November , 2011 , Pages 1339-1343 ; 9780791854907 (ISBN) Daneshvar, F ; Jahani, N ; Shafii, M. B ; ASME ; Sharif University of Technology
    Abstract
    In this experimental study, a four stroke diesel engine was conducted to investigate the effect of adding water-based ferrofluid to diesel fuel on engine performance. To our knowledge, Magnetic nanoparticles had not been used before. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 water-based ferrofluid/Diesel ratios by volume were used as fuel. The ferrofluid used in this study was a handmade water-based ferrofluid prepared by the authors. The results show that adding water-based ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12%, and decreasing the brake specific fuel consumption relatively up to... 

    Performance analysis and multi-objective optimization of an organic Rankine cycle with binary zeotropic working fluid employing modified artificial bee colony algorithm

    , Article Journal of Thermal Analysis and Calorimetry ; 2018 ; 13886150 (ISSN) Sadeghi, S ; Maghsoudi, P ; Shabani, B ; Gorgani, H. H ; Shabani, N ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature power cycles for reduction in exergy destruction occurring during heat absorption/rejection processes due to their suitable boiling characteristics. In this study, comprehensive energetic and exergetic analyses are mathematically performed for an organic Rankine cycle (ORC) system employing a potential binary zeotropic working fluid, namely R717/water. For this purpose, initially mass, energy, and exergy balance equations are derived. With regard to the similarity in molar mass of R717 (17.03 g mol−1) and water (18.01 g mol−1), there is no need to alter the size of the... 

    Performance analysis and multi-objective optimization of an organic Rankine cycle with binary zeotropic working fluid employing modified artificial bee colony algorithm

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 136, Issue 4 , 2019 , Pages 1645-1665 ; 13886150 (ISSN) Sadeghi, S ; Maghsoudi, P ; Shabani, B ; Gorgani, H. H ; Shabani, N ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature power cycles for reduction in exergy destruction occurring during heat absorption/rejection processes due to their suitable boiling characteristics. In this study, comprehensive energetic and exergetic analyses are mathematically performed for an organic Rankine cycle (ORC) system employing a potential binary zeotropic working fluid, namely R717/water. For this purpose, initially mass, energy, and exergy balance equations are derived. With regard to the similarity in molar mass of R717 (17.03 g mol −1 ) and water (18.01 g mol −1 ), there is no need to alter the size of... 

    Mathematical modeling of cooking pots' thermal efficiency using a combined experimental and neural network method

    , Article Energy ; Volume 31, Issue 14 , 2006 , Pages 2969-2985 ; 03605442 (ISSN) Hannani, S. K ; Hessari, E ; Fardadi, M ; Jeddi, M. K ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    A mathematical framework to model the heat transfer efficiency of cooking pots is proposed and exploited in this paper. The model consists of combining the experimental results and the statistical data of Residential Energy Consumption Survey (RECS) of Iran with a soft-computing concept such as neural network. Using neural network results, the variations of the efficiency with various parameters have been studied. It is shown that Group Method of Data Handling (GMDH)-type neural network can effectively model and predict thermal efficiency, as a function of important input parameters for a conventional cooking pot. Results show that efficiency increases with increasing diameter to flame... 

    Multi-objective optimal design of gas-fired heater based on modified design model of fired heater taking into account exergy, economic and environmental factors

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 34, Issue 7 , 2021 , Pages 1785-1798 ; 17281431 (ISSN) Ebrahimi Saryazdi, S. M ; Rezaei, F ; Saboohi, Y ; Sassani, F ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    Heaters are one of the central parts of natural gas reduction stations using turboexpanders to prevent the formation of hydrate and corrosion failure. This study intends to design a fired heater by applying a combustion sub-model to derive an optimal model for this kind of application. This model is developed to accurately consider all subsections of the fired heater namely radiation, convection, and shield sections, as well as flue gas composition, and its volume. Within this context, a multi-objective optimization is employed to identify the optimal design of the gas-fired heater in the natural gas reduction station for the Ramin power plant case study. The total economic and environmental... 

    Turbocharged spark-ignition engine performance prediction in various inlet charged air temperatures fueled with gasoline–ethanol blends

    , Article International Journal of Engine Research ; Volume 22, Issue 7 , 2021 , Pages 2233-2243 ; 14680874 (ISSN) Farzam, R ; Jafari, B ; Kalaki, F ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this research, the effect of alternative fuels and the inlet charged air temperature is numerically investigated on the performance of a turbocharged spark-ignition engine. For this purpose, a one-dimensional engine and turbocharger model is created in an engine simulation and performance analysis software and validated with former experimental results. Then, the model is run with four fuel types, including two gasoline types with different octane numbers and two ethanol–gasoline blend fuels—E25 and E85. In each case, the inlet charged air temperature is changed from cold to hot condition and performance characteristics such as the spark advance timing, brake torque, brake-specific fuel... 

    Prediction of stratified charge divided chamber engine performance

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 92-100 ; 10263098 (ISSN) Tiourad, M ; Mozafari, A ; Sharif University of Technology
    2009
    Abstract
    Certain stratified charge divided chamber engines have a very small pre-chamber, equipped with a spark plug and a main chamber connected to the pre-chamber through nozzles, A theoretical model is presented in this research to predict ignition delay and initiation of combustion in the pre-chamber. It considers flame progress in the pre-chamber up to the point where the flame penetrates the main chamber through the connecting nozzles. Step by step calculations then continue in the main chamber and the mass fraction burned and the energy release rate are calculated. The process continues to the point where all the fuel is burned. At each step, due to a one degree rotation of the crank shaft,... 

    CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Samiezadeh, S ; Khodaverdian, R ; Doranehgard, M. H ; Chehrmonavari, H ; Xiong, Q ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, we perform numerical simulations to investigate the thermal and flow characteristics of a parabolic trough solar collector equipped with a porous receiver tube and internal longitudinal fins. The heat transfer medium is a synthetic oil-Cu-Al2O3 hybrid nanofluid. We examine the thermal characteristics of the nanofluid in response to variations in several system parameters. We find that at Reynolds numbers between 5 × 103 and 5 × 105, increasing the volume fraction of Cu nanoparticles can increase the temperature gain at the exit of the receiver tube by 6.4%. Furthermore, the temperature gradient in the cross-section of the collector increases as the direct normal solar... 

    Application of fast-SAGD in naturally fractured heavy oil reservoirs: A case study

    , Article SPE Middle East Oil and Gas Show and Conference, MEOS, Proceedings, Manama ; Volume 3 , March , 2013 , Pages 1946-1953 ; 9781627482851 (ISBN) Hemmati Sarapardeh, A ; Hashemi Kiasari, H ; Alizadeh, N ; Mighani, S ; Kamari, A ; Baker Hughes ; Sharif University of Technology
    2013
    Abstract
    Steam injection process has been considered for a long time as an effective method to exploit heavy oil resources. Over the last decades, Steam Assisted Gravity Drainage (SAGD) has been proved as one of the best steam injection methods for recovery of unconventional oil resources. Recently, Fast-SAGD, a modification of the SAGD process, makes use of additional single horizontal wells alongside the SAGD well pair to expand the steam chamber laterally. This method uses fewer wells and reduces the operational cost compared to a SAGD operation requiring paired parallel wells one above the other. The efficiency of this new method in naturally fractured reservoir is not well understood.... 

    Exergy analysis of parabolic trough solar collectors using Al2O3/synthetic oil nanofluid

    , Article Solar Energy ; Volume 173 , 2018 , Pages 1236-1247 ; 0038092X (ISSN) Khakrah, H ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Parabolic trough solar collector (PTC) is one of the most mature and widely used type of solar energy harnessing devices. Therefore, investigation of the effect of various operational conditions on the overall efficiency of these devices has been topic of substantial interest in the recent decade. Moreover, utilization of nanoparticles as a useful additive to the working fluid should be examined thoroughly to optimize the collector's outputs. To do so, in the present study, energy and exergy efficiencies of a typical PTC as a function of several involving parameters are numerically calculated. These parameters are nanoparticle volume fraction (from 0 to 5 percent), environment wind speed... 

    Second law based modeling to optimum design of high capacity pulse tube refrigerators

    , Article International Journal of Refrigeration ; Volume 32, Issue 1 , 2009 , Pages 58-69 ; 01407007 (ISSN) Jafarian, A ; Saidi, M. H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2009
    Abstract
    The optimum design of a high capacity double inlet pulse tube refrigerator based on second law of thermodynamics has been presented in this paper. Second law is applied to calculate the work loss in the regenerator and to optimize the cryocooler performance. To investigate the behavior of the pulse tube refrigerator, mass and energy balance equations are applied to several control volumes of the cryocooler cycle. A complete system of conservation equations is employed to solve the regenerator analytically. The proposed model reports the cooling capacity of 110 W at 80 K cold end temperature at frequency of 50 Hz, orifice conductance of 0.4 and double inlet coefficient of 0.6, with 2.4 kW net... 

    Thermodynamic assessment and multi-objective optimization of performance of irreversible dual-miller cycle

    , Article Energies ; Volume 12, Issue 20 , 2019 ; 19961073 (ISSN) Abedinnezhad, S ; Ahmadi, M. H ; Pourkiaei, S. M ; Pourfayaz, F ; Mosavi, A ; Feidt, M ; Shamshirband, S ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    In this study, a new series of assessments and evaluations of the Dual-Miller cycle is performed. Furthermore, the specified output power and the thermal performance associated with the engine are determined. Besides, multi-objective optimization of thermal efficiency, ecological coefficient of performance (ECOP) and ecological function (Eun) by means of NSGA-II technique and thermodynamic analysis are presented. The Pareto optimal frontier obtaining the best optimum solution is identified by fuzzy Bellman-Zadeh, Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) decision-making... 

    Solar energy systems – Potential of nanofluids

    , Article Journal of Molecular Liquids ; Volume 289 , 2019 ; 01677322 (ISSN) Wahab, A ; Hassan, A ; Qasim, M. A ; Ali, H. M ; Babar, H ; Sajid, M. U ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Global warming escalation has extended average temperature of earth beyond its safe limit. To avert this environmental-threat, solar energy has acquired substantial attention of remarkable researchers in this century. To effectively utilize solar energy by transforming into thermal and electrical energy, the involvement of nanofluids having intensified thermal, optical and magnetic properties, has become very popular. The foremost objective of this article is to provide a comprehensive review on the applications of nanofluids in solar energy systems like solar collectors, photovoltaic cells, solar stills, and thermal energy storage, which are thoroughly discussed in this paper. The effect of... 

    An evaluation of wind turbine waste heat recovery using organic Rankine cycle

    , Article Journal of Cleaner Production ; Volume 214 , 2019 , Pages 705-716 ; 09596526 (ISSN) Nematollahi, O ; Hajabdollahi, Z ; Hoghooghi, H ; Kim, K. C ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Wind turbine size has increased to megawatt capacity, and the related technologies and facilities have improved, including the cooling systems. Currently, all of the heat generated by wind turbine components is wasted to the environment. This study presents a conceptual design of a novel method for waste heat recovery of a wind turbine using an organic Rankine cycle (ORC). An organic Rankine cycle is implemented to the wind turbine as a part of the cooling system. The proposed system is thermodynamically modeled to evaluate the amount of recovered energy. Seven working fluids are chosen and investigated in the simulations to estimate the working fluid effect. The results revealed that the...