Loading...
Search for: thermal-evaporation
0.005 seconds

    Multilayer evaporation of MAFAPbI3-xClx for the fabrication of efficient and large-scale device perovskite solar cells

    , Article Journal of Physics D: Applied Physics ; Volume 52, Issue 3 , 2019 ; 00223727 (ISSN) Tavakoli, M. M ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Saliba, M ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    FAPbI3 perovskites are excellent candidates for fabrication of perovskite solar cells (PSCs) with high efficiency and stability. However, these perovskites exhibit phase instability problem at room temperature. In this work, to address this challenge we use methylammonium chloride (MACl) as an additive and employed a layer-by-layer thermal evaporation technique to fabricate high-quality perovskite films on a large scale of 25 cm2. The optimized perovskite films show high crystallinity with large grains in the μm-range and reveals phase stability due to the presence of MACl after the annealing process. Finally, we achieved PSCs with 17.7% and 15.9% for active areas of 0.1 cm2 and 0.8 cm2,... 

    Self-encapsulation of single-texture CoSi2 nanolayer by TaSi2

    , Article Thin Solid Films ; Volume 516, Issue 18 , 31 July , 2008 , Pages 6008-6012 ; 00406090 (ISSN) Akhavan, O ; Azimirad, R ; Moshfegh, A. Z ; Sharif University of Technology
    2008
    Abstract
    In this work, we have studied single-texture formation of CoSi2 layer in heat-treated Co/Ta0.7W0.3/Si(100) structure. Moreover, self-encapsulation process of the CoSi2 layer and surface roughness of the encapsulated layer, as a contact layer, has been examined. A direct current magnetron co-sputtering technique was employed to deposit a 10 nm Ta0.7W0.3 alloy intermediate layer. After growth of the layer on the Si substrate, a 25 nm Co layer was deposited using thermal evaporation method. Post-annealing process of the films was treated in an N2(80%) + H2(20%) ambient in a temperature range from 400 to 1000 °C for 60 min. X-ray diffraction analysis showed that a single-texture CoSi2 layer with... 

    Hydrophilicity variation of WO3 thin films with annealing temperature

    , Article Journal of Physics D: Applied Physics ; Volume 40, Issue 4 , 2007 , Pages 1134-1137 ; 00223727 (ISSN) Azimirad, R ; Naseri, N ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2007
    Abstract
    The influence of annealing temperature on the hydrophilic property of WO3 thin films deposited by thermal evaporation and sol-gel dip-coating methods was studied and compared for the first time. The thermal evaporated WO3 thin films annealed at 400 °C showed a nearly super-hydrophilic property without UV and visible illumination. By analysing the O(1s) core level peak of XPS spectra, the amount of oxygen contributed at various bonds (including O2-, OH- and H2O) on the surface of the annealed samples at different temperatures were measured. In addition, a correlation between the hydrophilicity and the concentration of chemisorbed water on the film surface was suggested, independent of the... 

    Optical properties and surface morphology of evaporated (WO 3)1-x-(Fe2O3)x thin films

    , Article Thin Solid Films ; Volume 484, Issue 1-2 , 2005 , Pages 124-131 ; 00406090 (ISSN) Moshfegh, A. Z ; Azimirad, R ; Akhavan, O ; Sharif University of Technology
    2005
    Abstract
    Thin films of (WO3)1 - x-(Fe2O 3)x composition were deposited by thermal evaporation on glass substrates and then all samples were annealed at 400 °C in air. Optical properties such as transmittance, reflectance, and optical bandgap energy of the "as deposited" and the annealed films were studied using ultraviolet-visible spectrophotometry. It was shown that the annealing process did not substantially change the optical transmittance and reflectance of all the films except the films having x = 0.75. By increasing Fe2O 3 content in the films from x = 0 to x = 0.75, optical bandgap energy decreased from 3.4 to about 1.3 eV and from 3.1 to 2.1 eV for the "as deposited" and the annealed samples,... 

    Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films

    , Article Applied Surface Science ; Volume 276 , 2013 , Pages 628-634 ; 01694332 (ISSN) Choobtashani, M ; Akhavan, O ; Sharif University of Technology
    2013
    Abstract
    Tungsten oxide thin films (deposited by thermal evaporation or sol gel method) were used for photocatalytic reduction of graphene oxide (GO) platelets (synthesized through a chemical exfoliation method) on surface of the films under UV or visible light of the environment, in the absence of any aqueous ambient at room temperature. Atomic force microscopy (AFM) technique was employed to characterize surface morphology of the GO sheets and the tungsten oxide films. Moreover, using X-ray photoelectron spectroscopy (XPS), chemical state of the tungsten oxide films and the photocatalytic reduction of the GO platelets were quantitatively investigated. The better performance of the sol-gel tungsten... 

    The effect of heat treatment on physical properties of nanograined (WO 3)1-x-(Fe2O3)x thin films

    , Article Vacuum ; Volume 85, Issue 8 , February , 2011 , Pages 810-819 ; 0042207X (ISSN) Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    Thin films of (WO3)1-x-(Fe2O 3)x composition were deposited by thermal evaporation on glass substrates and then all samples were annealed at 200-500 °C in air. Optical properties such as transmittance, reflectance, optical bangap energy, and the optical constants of the "as deposited" and the annealed films were studied using ultraviolet-visible spectrophotometry. It was shown that the annealing process changes the film optical properties which were related to Fe2O3 concentration. Moreover, using X-ray photoelectron spectroscopy, we have indicated that WO3 is stoichiometric, while iron oxide was in both FeO and Fe2O3 compositions so that the FeO composition converted to Fe2O3 after the... 

    All-Vacuum-processing for fabrication of efficient, large-scale, and flexible inverted perovskite solar cells

    , Article Physica Status Solidi - Rapid Research Letters ; 2020 Tavakoli, M. M ; Tavakoli, R ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Vacuum deposition of transporting layers, especially the hole-transporting layer (HTL), is still a big challenge for the fabrication of large-area perovskite solar cells (PSCs). In this work, efficient and large-area PSCs are fabricated by thermal evaporation of all the layers. Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) is used as the HTL, and a compact layer of PTAA with low thickness (2–10 nm) is successfully deposited using thermal evaporation. The optical and ultraviolet photoelectron spectroscopy (UPS) measurements prove that the evaporated PTAA has a great match with the single A-cation methylammonium triiodide perovskite film in terms of quenching effect and band...