Loading...
Search for: thermochemistry
0.009 seconds

    DFT/B3LYP study of thermochemistry of D-glucosamine, a representative polyfunctional bioorganic compound

    , Article Scientia Iranica ; Volume 15, Issue 4 , 2008 , Pages 422-429 ; 10263098 (ISSN) Fattahi, A ; Ghorat, M ; Pourjavadi, A ; Kurdtabar, M ; Torabi, A. A ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    D-glucosamine, as a representative polyfunctional compound, is a bioactive amino sugar. In this study, the gas phase thermochemical properties of D-glucosamine, including its Metal Ion Affinity (MIA), metal binding sites, Anion Affinity (AA), acidity and proton affinity, have been explored, using the Density Functional Theory (DFT) and a 6-311++G**basis set. The summary of the MIA and AA results (in kcal/mol-1) are: Li+ = 67.6, Na+ = 51.1, K+ = 37.3, Mg2+ = 207.9, Ca2+ = 150.4, Zn2+ = 251.2, Cl- = 27.4, CN- = 28.0. The acidity values calculated at different sites, including four -OH groups and one -NH2 group, range from 344.0 to 373.0 kcal/mol-1. These results, surprisingly, indicate how... 

    Freestanding light scattering hollow silver spheres prepared by a facile sacrificial templating method and their application in dye-sensitized solar cells

    , Article Journal of Power Sources ; Volume 225 , 2013 , Pages 46-50 ; 03787753 (ISSN) Sharifi, N ; Dadgostar, S ; Taghavinia, N ; Iraji Zad, A ; Sharif University of Technology
    2013
    Abstract
    Hollow silver microspheres are synthesized in an easy and environmentally friendly process by a sacrificial templating method. Carbonaceous microspheres (CMSs) are used as hard templates, which have been synthesized previously by a hydrothermal carbonization process. Hollow silver spheres (HSSs) are synthesized by thermal removal of the core carbon component. The thickness of shell could be controlled by the concentration of precursors. Depending on the thickness, uniform or discontinuous shells are formed. The spheres are coated with SiO 2, and then added into the electrolyte of a dye solar cell. The enhancement of 50% is achieved in short-circuit current density (JSC) due to the scattering... 

    On the performance of passivr TMDs in reducing the damage in 2-D concrete structural models

    , Article Procedia Engineering ; Volume 14 , 2011 , Pages 1665-1671 ; 18777058 (ISSN) Rofooei, F. R ; Abtahi, P ; Sharif University of Technology
    2011
    Abstract
    Pozzolanic materials, either naturally occurring or artificially made, have long been in practice since the early civilization. In recent years, the utilisation of pozzolanic materials in concrete construction has become increasingly widespread, and this trend is expected to continue in the years ahead because of technological, economical and ecological advantages of the materials. One of the latest additions to the ash family is palm oil fuel ash, a waste material obtained on burning of palm oil husk and palm kernel shell as fuel in palm oil mill boilers, which has been identified as a good pozzolanic material. This paper highlights test results on the performance behavior of palm oil fuel... 

    Comparison of thermochemistry of aspartame (artificial sweetener) and glucose

    , Article Carbohydrate Research ; Volume 344, Issue 1 , 2009 , Pages 127-133 ; 00086215 (ISSN) Rashidian, M ; Fattahi, A ; Sharif University of Technology
    2009
    Abstract
    We have compared the gas phase thermochemical properties of aspartame (artificial sweetener) and α- and β-glucose. These parameters include metal ion affinities with Li+-, Na+-, K+-, Mg+2-, Ca+2-, Fe+2-, Zn+2-ions, and chloride ion affinity by using DFT calculations. For example, for aspartame, the affinity values for the above described metal ions are, respectively, 86.5, 63.2, 44.2, 255.4, 178.4, 235.4, and 300.4, and for β-glucose are 65.2, 47.3 32.9, 212.9, 140.2, 190.1, and 250.0 kcal mol-1, respectively. The study shows differences between the intrinsic chemistry of aspartame and glucose. © 2008 Elsevier Ltd. All rights reserved  

    A molecular-dynamics study of thermal and physical properties of platinum nanoclusters

    , Article Fluid Phase Equilibria ; Volume 280, Issue 1-2 , 2009 , Pages 16-21 ; 03783812 (ISSN) Akbarzadeh, H ; Parsafar, G. A ; Sharif University of Technology
    2009
    Abstract
    Metallic nanoclusters are interesting because of their utility in catalysis and sensors. The thermal and physical characteristics of metallic Pt nanoclusters with different sizes were investigated via molecular-dynamics simulations using Quantum Sutton-Chen (QSC) potential. This force field accurately predicts solid and liquid states properties as well as melting of the bulk platinum. Molecular dynamic simulations of Pt nanoclusters with 256, 456, 500, 864, 1372, 2048, 2916, 4000, 5324, 6912, 8788 atoms have been carried out at various temperatures. The Pt-Pt radial distribution function, internal energy, heat capacity, enthalpy, entropy of the nanoclusters were calculated at some... 

    Thermochemical growth of Mn-doped CdS nanoparticles and study of luminescence evolution

    , Article Nanotechnology ; Volume 19, Issue 22 , 2008 ; 09574484 (ISSN) Marandi, M ; Taghavinia, N ; Sedaghat, Z ; Iraji Zad, A ; Mahdavi, S. M ; Sharif University of Technology
    2008
    Abstract
    We report a new method of growing Mn-doped CdS (CdS:Mn) nanoparticles in an aqueous solution at boiling temperature. The idea is to use precursors that react only at high temperature, in order to gain crystalline luminescent nanoparticles. CdSO4, Mn(NO3)2 and Na 2S2O3 were used as the precursors, and thioglycerol was employed as the capping agent and also the reaction catalyst. Na2S2O3 is thermally sensitive and it releases S2- ions upon heating. The CdS:Mn nanoparticles obtained are about 4 nm in size and show both cubic and hexagonal crystalline phases with a ratio of 35% to 65%. The luminescence of nanoparticles contains a peak at 580 nm, which is related to Mn2+ ions. Prolonged reaction... 

    Studies of Iranian heavy oils pertinent to reservoir conditions for their auto-ignition to initiate fire flooding

    , Article Chemical Engineering Communications ; Volume 196, Issue 5 , 2009 , Pages 643-657 ; 00986445 (ISSN) Price, D ; Razzaghi, S ; Kharrat, R ; Rashtchian, D ; Vossoughi, S ; Sharif University of Technology
    2009
    Abstract
    In this work, the potential for the auto-ignition of Iranian heavy oil during in situ combustion (ISC) process conditions was studied. Kinetic studies were carried out using thermal analysis techniques. Effects of oxygen partial pressure, reservoir pressure, and clay on the auto-ignition condition were investigated. Based on the experimental results obtained, a kinetic equation was derived for each of the different oil samples in the presence of different sands. The effect of partial pressure of oxygen in the injected air showed that at atmospheric pressure, low temperature combustion (LTC) was initiated at 275°C. Also, enriching the injected air by oxygen lowers the initial LTC temperature... 

    Acoustic characteristics of a rocket combustion chamber: radial baffle effects

    , Article Applied Acoustics ; Volume 70, Issue 8 , 2009 , Pages 1051-1060 ; 0003682X (ISSN) Farshchi, M ; Mehrjou, H ; Salehi, M. M ; Sharif University of Technology
    2009
    Abstract
    This paper describes methods used for determining the characteristic acoustic modes and frequencies of a liquid-propellant rocket-motor combustion chamber and effects of radial baffles on the chamber's acoustic field. A multi-point sensing experimental setup, including stationary and moving sensors, was used to measure characteristic frequencies and mode shapes of a combustion chamber. A new technique based on the comparison of signal phase angles from stationary sensors to that of a moving sensor was used to map complex characteristic mode shapes of a combustor. A three-dimensional Helmholtz acoustic solver was also developed using an efficient finite volume approach for complex geometries... 

    Prediction of stratified charge divided chamber engine performance

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 92-100 ; 10263098 (ISSN) Tiourad, M ; Mozafari, A ; Sharif University of Technology
    2009
    Abstract
    Certain stratified charge divided chamber engines have a very small pre-chamber, equipped with a spark plug and a main chamber connected to the pre-chamber through nozzles, A theoretical model is presented in this research to predict ignition delay and initiation of combustion in the pre-chamber. It considers flame progress in the pre-chamber up to the point where the flame penetrates the main chamber through the connecting nozzles. Step by step calculations then continue in the main chamber and the mass fraction burned and the energy release rate are calculated. The process continues to the point where all the fuel is burned. At each step, due to a one degree rotation of the crank shaft,...