Loading...
Search for: thermoelectric
0.012 seconds
Total 117 records

    Preparation of polyaniline/graphene coated wearable thermoelectric fabric using ultrasonic-assisted dip-coating method

    , Article Materials for Renewable and Sustainable Energy ; Volume 9, Issue 4 , 2020 Amirabad, R ; Ramazani Saadatabadi, A ; Siadati, M. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Abstract: The use of thermoelectric fabrics for powering wearable devices is expected to become widespread soon. A thermoelectric fabric was prepared by coating nanocomposite of polyaniline/graphene nanosheets (PANI/GNS) on a fabric. Four samples of the fabric containing different wt% of GNS (0.5, 2.5, 5, and 10) were prepared. To characterize the samples, Fourier transform infrared (FTIR) spectra, attenuated total reflectance-Fourier transform infrared (AT-FTIR) spectra, field-emission scanning electron microscopy (FE-SEM), electrical conductivity and Seebeck coefficient measurements were used. The electrical conductivity increased from 0.0188 to 0.277 S cm−1 (from 0.5 to 10 wt% of the GNS... 

    Graphene-based antidots for thermoelectric applications

    , Article Journal of the Electrochemical Society ; Volume 158, Issue 12 , 2011 , Pages K213-K216 ; 00134651 (ISSN) Karamitaheri, H ; Pourfath, M ; Pazoki, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2011
    Abstract
    The low temperature thermoelectric properties of hydrogen-passivated graphene-based antidot lattices are theoretically investigated. Calculations are performed using density functional theory in conjunction with the Landauer formula to obtain the ballistic transport coefficients. Antidot lattices with hexagonal, triangular and rectangular antidot shapes are studied. Methods to reduce the thermal conductance and to increase the thermoelectric power factor of such structures are studied. Our results indicate that triangular antidot lattices have the smallest thermal conductance due to longer boundaries, the smallest distance between the neighboring antidots, and the armchair edges. This... 

    Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices

    , Article Journal of Applied Physics ; Volume 110, Issue 5 , 2011 ; 00218979 (ISSN) Karamitaheri, H ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2011
    Abstract
    The thermoelectric properties of graphene-based antidot lattices are theoretically investigated. A third nearest-neighbor tight-binding model and a fourth nearest-neighbor force constant model are employed to study the electronic and phononic band structures of graphene antidot lattices with circular, rectangular, hexagonal, and triangular antidot shapes. Ballistic transport models are used to evaluate transport coefficients. Methods to reduce the thermal conductance and to increase the thermoelectric power factor of such structures are studied. Our results indicate that triangular antidot lattices have the smallest thermal conductance due to longer boundaries and the smallest distance... 

    Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons

    , Article Journal of Applied Physics ; Volume 111, Issue 5 , 2012 ; 00218979 (ISSN) Karamitaheri, H ; Neophytou, N ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2012
    Abstract
    We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon's length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum mechanical non-equilibrium Green's function simulations. Starting from the pristine zigzag nanoribbon structure that exhibits very poor thermoelectric performance, we demonstrate how after a series of engineering design steps the performance can be largely enhanced. Our results could be useful in the... 

    Feasibility Study and Conceptual Design of A Radioisotope Thermoelectric Generator

    , M.Sc. Thesis Sharif University of Technology Amirnasab, Mohammad (Author) ; Vosoughi, Naser (Supervisor) ; Feghhi, Amir Hosain (Supervisor)
    Abstract
    Radioisotope thermoelectric generator (RTG) is a kind of nuclear batteries, in which thermal energy resulting from the discharge of charged particles decayed of radioisotope, using thermoelectric arrays, can be converted to electrical energy. In this study, the different kinds of RTGs introduced and applications of them have been expressed. All types of radioisotopes used in RTGs have been reviewed and the most suitable of them in terms of maximum thermal power density and minimum dose rate have been selected. All types of thermoelectrics used in RTGs have been reviewed and the most suitable of them in terms of the range of temperature and maximum efficiency have been selected.
    In this... 

    Optimal Fractional PID for Thermoelectric Cooler

    , M.Sc. Thesis Sharif University of Technology Beheshti Froutani, Mohammad (Author) ; Alasty, Aria (Supervisor) ; Salarieh, Hassan (Supervisor)
    Abstract
    Today, energy production as well as environmental damage caused by non-renewable fuels has become one of the serious challenges of Society. Thermoelectrics are among the systems that can be used as a new source for cooling and heating production as well as electric energy production.Thermoelectrics can be divided into two categories: Cooler/thermal thermoelectrics and thermoelectric generators. Cooler/thermal thermoelectrics can be used as a source for producing cooling and heating in various applications, among its advantages are the non-use of environment-hazardous refrigerants, suitable for use in small spaces, not heavy and complicated, easy maintenance and low cost. It is also possible... 

    Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator

    , Article Energy ; Volume 172 , 2019 , Pages 675-690 ; 03605442 (ISSN) Rostamzadeh, H ; Nourani, P ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Extraction of thermal heat from a salinity-gradient solar pond (SGSP) as a way of accumulating solar energy, stockpiling and taking merit of it for medium and low temperature demands is presented as an interesting topic in recent decades. This reliable supply of heat can be used for low-temperature refrigeration systems to yield cooling load for residential applications. For this purpose, theoretical investigation of ejector refrigeration cycle (ERC) driven by a SGSP is carried out to produce cooling output. Also, thermoelectric generator (TEG) is used as a potential device replacing condenser of the ERC for the sake of bolstering performance of the fundamental system by producing power,... 

    Hydrogen production performance of a photovoltaic thermal system coupled with a proton exchange membrane electrolysis cell

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 7 , 2022 , Pages 4472-4488 ; 03603199 (ISSN) Salari, A ; Hakkaki Fard, A ; Jalalidil, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the... 

    Production of Thermoelectric Polymer Fabric and Investigation of Their Properties

    , M.Sc. Thesis Sharif University of Technology Amirabad, Reza (Author) ; Ramazani Saadat Abadi, Ahmad (Supervisor) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    Flexible thermoelectric (TE) fabrics were prepared by dip coating of a mixture solution of water base colloidal geraphen nano sheet(GNS) and carbon nano tube(CNT) and polyaniline (PANI) on polyester fabric. The phase composition and morphology of the TE fabrics were investigated by FTIR-ATR diffraction and feld emission scanning electron microscopy. The TE properties of the PANI/GNS or CNT coated fabrics with different GNS and CNT loadings were measured in the temperature range from 303 to 338 K. As the content of GNS increased from 0.5 to 10 wt% and CNT increased from 0.5 to 20 wt%, the electrical conductivity of the PANI/GNS or CNT coated polyester fabrics increased, while the Seebeck... 

    Graphyne nanotubes: materials with ultralow phonon mean free path and strong optical phonon scattering for thermoelectric applications

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 39 , 2018 , Pages 22688-22698 ; 19327447 (ISSN) Reihani, A ; Soleimani, A ; Kargar, S ; Sundararaghavan, V ; Ramazani, A ; Sharif University of Technology
    Abstract
    Thermal conductivity and phonon transport properties of graphyne nanotubes (GNTs) and conventional carbon nanotubes (CNTs) are studied using nonequilibrium molecular dynamics simulations. The effect of nanotube length on the thermal conductivity and phonon transport transition from a ballistic to a diffusive regime is investigated. It is found that the thermal conductivity is significantly higher for CNTs in comparison to that of GNTs across the entire ballistic-diffusive transport range. Among GNTs, β- and γ-GNTs demonstrated the lowest and highest thermal conductivities, respectively. In addition, ultralow ballistic to diffusive transition length (4.5-7.6 nm) was observed in GNTs, which... 

    Comparing half-metallic, MOKE, and thermoelectric behavior of the CrTiZ (Z = As, P) half-Heuslers: A DFT study

    , Article Materials Research Express ; Volume 8, Issue 4 , 2021 ; 20531591 (ISSN) Sadeghi, M ; Zelati, A ; Boochani, A ; Arman, A ; Mirzaei, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Structural, half-metallic, magneto-optic, and thermoelectric properties of CrTiZ (Z = As, P) half-Heusleres compounds are investigated based on density functional theory. These compounds have mechanical stability in the ferromagnetic state with a high bulk modulus. They are often half-metallic with a large and integer magnetic moment and are very attractive in spintronics, magneto-optics applications. The magnetic moments of CrTiAs and CrTiP were 2.9865 μB and 3.00 μB, respectively, which were attributed to their ferromagnetic phase. Additionally, the positive sign of the phonon branches indicates the dynamic stability of these compounds. Applying both GGA and mBJ approximations, CrTiAs and... 

    Experimental Investigation of PVT System Combined with Thermoelectric Module

    , M.Sc. Thesis Sharif University of Technology Mohsenzadeh, Milad (Author) ; shafii, Behshad (Supervisor) ; Saboohi, Yadollah (Supervisor)
    Abstract
    Photovoltaic phenomena is the base of Photovoltaic cells technology that can transform the solar insolation to electricity directly. In this transformation, the solar insolation intensity is the important factor to increase the performance of the Photovoltaic cells but one of the biggest barriers in the extension way of this technology is its more cost that need to be decrease. Concentration of solar radiation method is the best way to increase the performance of Photovoltaic systems and decrease its initial cost. At this project a novel structure of solar parabolic through concentrator is investigated experimentally and analytically. The usage of Thermoelectric module with Photovoltaic... 

    Energy, exergy, and economic analyses of an innovative energy storage system; liquid air energy storage (LAES) combined with high-temperature thermal energy storage (HTES)

    , Article Energy Conversion and Management ; Volume 226 , 15 December , 2020 Nabat, M. H ; Zeynalian, M ; Razmi, A. R ; Arabkoohsar, A ; Soltani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Liquid air energy storage is one of the most recent technologies introduced for grid-scale energy storage. As the title implies, this technology offers energy storage through an air liquefaction process. High energy storage density, no geographical limitation, and applicability for large-scale uses are some of the advantages of this technology. To improve the performance and environmental friendliness of the conventional design of this technology, a novel liquid air energy system combined with high-temperature thermal energy storage, thermoelectric generator, and organic Rankine cycle is proposed in the present article. The thermal energy storage unit removes the need for the conventional... 

    Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers

    , Article Energy Conversion and Management ; Volume 174 , 2018 , Pages 417-429 ; 01968904 (ISSN) Eslami, M ; Tajeddini, F ; Etaati, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Condensation of water vapor available in atmospheric air can be considered as a solution for water scarcity problem. In this paper, a comprehensive thermodynamic analysis of water production from humid air using thermoelectric coolers (TECs) is presented. The system consists of a number of thermoelectric coolers, a fan to supply the required air flow circulation, two cold and hot air channels, heat sinks and solar cells for powering the thermoelectric coolers and fan. Effects of various design parameters are investigated and discussed. The proposed design is optimized to get the maximum effectiveness which is defined as the amount of produced water per unit of energy consumption. Sensitivity... 

    A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module

    , Article Renewable Energy ; Volume 153 , 2020 , Pages 1261-1271 Salari, A ; Parcheforosh, A ; Hakkaki Fard, A ; Amadeh, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this work, a three-dimensional numerical model is developed to investigate the performance of a photovoltaic thermal system integrated with a thermoelectric generator module (PVT/TE). Furthermore, the effects of various operating parameters such as solar radiation, coolant mass flow rate, and inlet and ambient temperatures on the performance of both the PVT and PVT/TE systems are investigated and compared. Based on the obtained results, the electrical efficiency of the PVT/TE system, when exposed to solar radiation of 600 and 1000 W/m2, is 6.23% and 10.41% higher than that of the PVT system, respectively. Besides, the electrical efficiency of the PVT and PVT/TE by increasing the inlet... 

    Hydrogen production performance of a photovoltaic thermal system coupled with a proton exchange membrane electrolysis cell

    , Article International Journal of Hydrogen Energy ; 2021 ; 03603199 (ISSN) Salari, A ; Hakkaki Fard, A ; Jalalidil, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the... 

    Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery

    , Article Energy Reports ; Volume 7 , 2021 , Pages 300-313 ; 23524847 (ISSN) Aliahmadi, M ; Moosavi, A ; Sadrhosseini, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Three novel geothermal-based organic Rankine cycle (ORC) systems are proposed to enhance the efficiency and for waste heat recovery purpose. The proposed systems are modeled based on a basic ORC system (concept 1), an ORC system with an internal heat exchanger (concept 2), and a regenerative ORC system (concept 3). Accordingly, two thermoelectric generators (TEG) are introduced into the systems to exploit the waste heat of the system. The condenser is replaced with a TEG unit while the other TEG unit is used to recover the waste heat of the reinjected geothermal fluid. A comprehensive numerical investigation is conducted to compare the proposed systems from the thermodynamic and... 

    Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery

    , Article Energy Reports ; Volume 7 , 2021 , Pages 300-313 ; 23524847 (ISSN) Aliahmadi, M ; Moosavi, A ; Sadrhosseini, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Three novel geothermal-based organic Rankine cycle (ORC) systems are proposed to enhance the efficiency and for waste heat recovery purpose. The proposed systems are modeled based on a basic ORC system (concept 1), an ORC system with an internal heat exchanger (concept 2), and a regenerative ORC system (concept 3). Accordingly, two thermoelectric generators (TEG) are introduced into the systems to exploit the waste heat of the system. The condenser is replaced with a TEG unit while the other TEG unit is used to recover the waste heat of the reinjected geothermal fluid. A comprehensive numerical investigation is conducted to compare the proposed systems from the thermodynamic and... 

    Numerical simulation of a concentrating photovoltaic-thermal solar system combined with thermoelectric modules by coupling Finite Volume and Monte Carlo Ray-Tracing methods

    , Article Energy Conversion and Management ; Volume 172 , 2018 , Pages 343-356 ; 01968904 (ISSN) Shadmehri, M ; Narei, H ; Ghasempour, R ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    During the last decades, the adoption of more strict safety and environmental regulations, as well as a rise in energy costs, sparked an increasing interest in the design of renewable energies systems, particularly solar systems, to supply both electrical power and heat. Because of their capability to simultaneously supply both electricity and heat, concentrating photovoltaic-thermal and thermoelectric hybrid systems have recently attracted scholarly attention. In this study, a detailed three-dimensional computational model of a novel concentrating photovoltaic-thermal solar system combined with thermoelectric modules in an integrated design with a triangular absorber and corresponding... 

    Experimental Investigation of Photovoltaic/thermal-Thermoelectric Hybrid System with Phase Change Material

    , M.Sc. Thesis Sharif University of Technology Mazloom, Ali (Author) ; Shafiee, Mohammad Behshad (Supervisor) ; Borooshaki, Mehrdad (Supervisor)
    Abstract
    Nowadays energy consumption increases in our daily life and incredibly enhancement of growth rate can be seen recent years. Hence, the use of renewable energy is prioritized. Solar energy is one of the choices because it is free and available. In this research, it has been tried to get electrical and thermal power at a reasonable cost both during the day and night. The system is equipped with a linear parabolic concentrator with a collector installed in the center of the concentrator which has been installed on its faces photovoltaic cells and thermoelectric modules, and five different systems have been tested with different components. Also, the paraffin has been used as a phase change...