Loading...
Search for: thermooxidation
0.004 seconds

    Morphological and mechanical properties of polyamide 6/nanodiamond composites prepared by melt mixing: effect of surface functionality of nanodiamond

    , Article Polymer International ; Volume 66, Issue 4 , 2017 , Pages 557-565 ; 09598103 (ISSN) Karami, P ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Surface chemistry of as-received nanodiamond (ND) was first tailored by dry thermal oxidation to obtain carboxylated ND (ND-COOH) and by wet chemistry to obtain ethylenediamine-functionalized ND (ND-EDA). Then, the surface-functionalized ND particles were dispersed in polyamide 6 (PA6) using the melt-mixing method. Transmission optical and scanning electron microscopies indicated a fine dispersion at low nanodiamond concentrations, e.g. 0.25 wt%, particularly with ND-EDA. Differential scanning calorimetry revealed that ND-EDA favoured the α-phase crystal and enhanced the degree of crystallinity of PA6. Experimental data indicated that ND-EDA had considerably improved tensile properties at... 

    Facile synthesis of CuO@PbS core/shell nanowire arrays

    , Article Materials Letters ; Volume 193 , 2017 , Pages 259-262 ; 0167577X (ISSN) Farshidi, H ; Youzbashi, A. A ; Heidari Saani, M ; Rashidi, A ; Kazemzadeh, A ; Kiani, F ; Sharif University of Technology
    Abstract
    Nanowire arrays of copper oxide were first grown vertically using simple and cost effective thermal oxidation method on a copper foil. Subsequently, in order to deposit and grow PbS nanocyrstalline thin films on CuO NWs by utilizing the chemical bath deposition technique, these arrays were immersed as the substrate in the reaction solution consisting of Pb(NO3)2, (NH2)2CS and NaOH. The final products were characterized in detail by which the formation of uniform, unique arrays of CuO@PbS core–shell NWs was confirmed. Due to the nature of methods employed in synthesis of this hetero structure, the tuning of core and shell size and consequently properties of the novel structure is easily... 

    Thermally oxidized Nanodiamond: an effective sorbent for separation of methotrexate from aqueous media: synthesis, characterization, in vivo and in vitro biocompatibility study

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 29, Issue 3 , 2019 , Pages 701-709 ; 15741443 (ISSN) Zamani, M ; Aghajanzadeh, M ; Molavi, H ; Danafar, H ; Shojaei, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In the present study the effect of nanodiamond (ND) on the adsorption capacity of Drug has been investigated. Thermal oxidation nanodiamond (OND) was used as adsorbents for Methotrexate adsorption. The surface properties of NDs were studied by Fourier transform infrared spectroscopy and zeta potential. It was determined that thermal oxidation changed the surface properties of ND, including increase the amount of carboxylic acid groups and decreasing the zeta potential of ND by increasing the thermal oxidation time. The adsorption experiments showed that untreated ND (UND) has large adsorption capacity and fast adsorption kinetic for methotrexate (MTX). These results suggest that the... 

    Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond

    , Article Carbohydrate Polymers ; Volume 167 , 2017 , Pages 219-228 ; 01448617 (ISSN) Delavar, Z ; Shojaei, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Polymer composite films based on chitosan (CS) and nanodimaond (ND) were prepared using solution casting method. ND with variable contents of carboxylic functional group was prepared using thermal oxidation at temperature of 420 °C under air atmosphere at various durations of 1.5 and 4.5 h. The interfacial interaction between NDs and CS and morphological evolution of CS in presence of NDs were investigated by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses. A significant improvement in tensile strength (∼85%) and tensile modulus (∼125%) of CS was achieved by oxidized ND (OND) obtained at higher oxidation time of 4.5 at low... 

    Surface and mechanical properties of modified porous titanium scaffold

    , Article Surface and Coatings Technology ; Volume 315 , 2017 , Pages 61-66 ; 02578972 (ISSN) Khodaei, M ; Valanezhad, A ; Watanabe, I ; Yousefi, R ; Sharif University of Technology
    Abstract
    The bioinertness makes surface treatments essential to improve the bioactivity of porous titanium scaffold, and surface treatment might affect their mechanical properties. So finding an optimum condition lying between bioactivity and mechanical properties seems to be curial. In this research, the effect of the time of the thermal oxidation at 600 °C on apatite formation and mechanical properties of the porous titanium scaffold was studied. The results of thin film X-ray diffraction and Raman spectroscopy indicated that the surface of heat treated samples up to 480 min was mainly covered by rutile. Also, wettability measurement and in vitro apatite formation ability assessment indicated that... 

    Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond

    , Article Journal of Colloid and Interface Science ; Volume 524 , 2018 , Pages 52-64 ; 00219797 (ISSN) Molavi, H ; Shojaei, A ; Pourghaderi, A ; Sharif University of Technology
    Abstract
    In the present study, capability of nanodiamond (ND) for the adsorption of anionic (methyl orange, MO) and cationic (methylene blue, MB) dyes from aqueous solution was investigated. Employing fourier transform infrared (FTIR) spectroscopy, Boehm titration method and zeta potential, it was found that the simple thermal oxidation of ND at 425 °C, increased the content of carboxylic acid of ND and accordingly the zeta potential of ND decreased considerably. Therefore, a series of oxidized NDs (OND) at various oxidation times and as-received untreated ND (UND) was used as adsorbents of MO and MB. The adsorption experiments exhibited that UND had large adsorption capacity, very fast adsorption... 

    Cyclic oxidation characteristics of HVOF thermal-sprayed NiCoCrAlY and CoNiCrAlY coatings at 1000 °C

    , Article Journal of Alloys and Compounds ; Volume 746 , 25 May , 2018 , Pages 509-519 ; 09258388 (ISSN) Feizabadi, A ; Salehi Doolabi, M ; Sadrnezhaad, S. K ; Rezaei, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Thermal-sprayed MCrAlY coatings have become widespread in various industries such as power plants, aeronautics, and oil and gas firms. High-temperature oxidation behavior of these coatings is therefore of significance. Spraying of two prevalent MCrAlY powders (NiCoCrAlY and CoNiCrAlY) on Hastelloy substrate by high velocity oxygen and fuel method and exposing them to 1000 °C air for resolving of their cyclic oxidation behavior are presented in this paper. The coatings were characterized by x-ray diffraction, scanning electron microscopy and energy-dispersive x-ray spectroscopy. The obtained oxidation kinetic indicated that at 1000 °C, the thermally sprayed NiCoCrAlY coating has greater... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    Synthesis and characterization of polyaniline/nanodiamond hybrid nanostructures with various morphologies to enhance the corrosion protection performance of epoxy coating

    , Article Diamond and Related Materials ; Volume 120 , 2021 ; 09259635 (ISSN) Mohammadkhani, R ; Shojaei, A ; Rahmani, P ; Pirhady Tavandashti, N ; Amouzegar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, nano-sized diamond particles (ND) were functionalized in two consecutive stages. First, dry thermal oxidation was employed to obtain carboxylated ND. In the next step, carboxylated ND was properly surface modified through wet chemistry to acquire aminated-ND (ND-NH2). Then, polyaniline (PANI) was synthesized in the presence of aminated-ND particles at a broad concentration from 1 wt% to 70 wt% to obtain PANI/ND hybrid nanostructures. The chemical structure, morphology, and thermal stability of nanoparticles were comprehensively characterized by different techniques such as FT-IR, UV–visible, TGA, XRD, FESEM, and TEM. It was observed that the morphology of PANI/ND... 

    Silane functionalization of nanodiamond for polymer nanocomposites-effect of degree of silanization

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 506 , 2016 , Pages 254-263 ; 09277757 (ISSN) Hajiali, F ; Shojaei, A ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The silanization of nanodiamond (ND) was successfully carried out by using the esterification reaction of hydrolyzed vinyltrimethoxysilane (VTS) in alcoholic solution. The surface carboxylic group of ND was first enhanced by thermal oxidation to increase the degree of esterification reaction. The extent of silane functionalization of ND was controlled by varying the weight ratio of VTS and oxidized ND (oxND), from 2:1 to 10:1 (w/w) in the functionalization reaction medium. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) revealed that the highest degree of silanization occurred at VTS/oxND of 5:1 (w/w), while more silane concentrations resulted in... 

    Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays

    , Article Journal of Colloid and Interface Science ; Volume 521 , 2018 , Pages 119-131 ; 00219797 (ISSN) Kiani, F ; Ashari Astani, N ; Rahighi, R ; Tayyebi, A ; Tayebi, M ; Khezri, J ; Hashemi, E ; Rothlisberger, U ; Simchi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    In the present work, the effect of graphene oxide (GO) nanosheets on the antibacterial activity of CuO nanowire arrays under visible light irradiation is shown. A combined thermal oxidation/electrophoretic deposition technique was employed to prepare three-dimensional networks of graphene oxide nanosheets hybridized with vertically aligned CuO nanowires. With the help of standard antibacterial assays and X-ray photoelectron spectroscopy, it is shown that the light-activated antibacterial response of the hybrid material against gram-negative Escherichia coli is significantly improved as the oxide functional groups of the GO nanosheets are reduced. In order to explore the physicochemical...