Loading...
Search for: thick-films
0.011 seconds

    Electroplating and characterization of Cr–Al2O3 nanocomposite film from a trivalent chromium bath [electronic resource]

    , Article Anti-Corrosion Methods and Materials ; Vol 61, No 4, 2014, 205-214 Salehi Doolabi, M. (Mohsen) ; Sadrnezhaad, Khatiboleslam ; Salehi Doolabi, Davood ; Sharif University of Technology
    Abstract
    The main aim of this study was to improve current efficiency and to obtain thicker coatings via aluminum oxide (Al2O3) addition to the chromium (Cr) (III) bath. Design/methodology/approach ‐ Pure Cr and nanocomposite Cr–Al2O3 coatings were electrodeposited from Cr (III) bath onto cathode copper substrates by conventional method. Dependence of current efficiency to current density, Al2O3 content and particle size were investigated. Findings ‐ Current efficiency increased with Al2O3 amount and decreased with Al2O3 particle size. Maximum current efficiency was achieved at 25 A/dm2 for pure Cr and 30 A/dm2 for composite coatings. Al2O3 bath content, current density and stirring rate increased... 

    TiO2 nanostructured films on mica using liquid phase deposition

    , Article Materials Chemistry and Physics ; Volume 107, Issue 2-3 , 2008 , Pages 449-455 ; 02540584 (ISSN) Pourmand, M ; Taghavinia, N ; Sharif University of Technology
    2008
    Abstract
    Liquid phase deposition is a method to grow conformal TiO2 films with good crystallinity on various substrates. The growth depends on the hydrophilicity of the substrate surface and we found that mica is a substrate capable of forming uniform and thick films. Films were grown using an aqueous solution of TiF4 through a hydrolysis-condensation process. We have studied films properties; morphology, porosity and thickness, in terms of growth conditions, i.e. TiF4 concentration, growth temperature, deposition time and pH. The porosity of films was shown to rapidly increase from about 18% to about 25% and remained the same for longer growth times. The growth process of films could be identified... 

    Fabrication and the electrochemical activation of network-like MnO2 nanoflakes as a flexible and large-area supercapacitor electrode

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 11 , 2018 , Pages 3507-3514 ; 14328488 (ISSN) Mardi, S ; Moradlou, O ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    Porous network-like MnO2 thick films are successfully synthesized on a flexible stainless steel (SS) mesh using a simple and low-cost electrodeposition method followed by an electrochemical activation process. Morphology, chemical composition, and crystal structure of the prepared electrodes before and after the activation process are determined and compared by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The results show that the implementation of the electrochemical activation process does not change the chemical composition and crystal structure of the films, but it influences the surface morphology of the MnO2... 

    Theoretical analysis of polymeric and crystalline thick films melting with a single gold nanoparticle embedded in a transparent matrix under nanosecond pulsed laser excitation

    , Article Journal of Physics D: Applied Physics ; Volume 45, Issue 47 , 2012 ; 00223727 (ISSN) Rahimi, L ; Bahrampour, A. R ; Pepe, G. P ; Sharif University of Technology
    2012
    Abstract
    Optothermal properties of noble metal nanoparticles can be used in a wide range of applications. This paper presents the results of a theoretical study on the utilization of laser-induced heating of a gold nanoparticle (GNP) to melt a region of a transparent material with sub-wavelength spatial resolution. The considered system consists of a 10 or 15nm diameter GNP fixed inside a silica substrate. The silica surface is covered with a thick film of the transparent polymeric or crystalline material. The heating and melting processes are studied under a 7.5ns pulsed laser illumination. Calculations are conducted under three temperature limits, on the maximum temperature of the free electrons,... 

    Nanostructured TiO2 thick films aided by new viscous gels for dye-sensitized solar cell applications

    , Article Journal of Sol-Gel Science and Technology ; Volume 82, Issue 2 , 2017 , Pages 541-550 ; 09280707 (ISSN) Babamahdi, Z ; Mohammadi, M. R ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    We develop a facile route for deposition of mesoporous TiO2 thick films over several micrometers by sol–gel and evaporation-induced self-assembly processes using Pluronic F127. The light harvesting of deposited films by two different methods (i.e., using a viscous gel and a paste) is studied by controlling their mesoscopic characteristics, phase composition and thickness for dye-sensitized solar cells applications. It is revealed that the mesoscopic films have mixtures of anatase and rutile crystal structures with surface area in the range 50.6–94.6 m2/g. We observe that the mesoporous TiO2 films prepared under optimized conditions improve light harvesting and dye loading of photoelectrodes.... 

    Mild steel corrosion modelling in presence of hydrogen sulphide in aqueous solutions

    , Article Corrosion Engineering Science and Technology ; Volume 43, Issue 4 , 2008 , Pages 324-327 ; 1478422X (ISSN) Shayegani, M ; Afshar, A ; Ghorbani, M ; Rahmaniyan, M ; Sharif University of Technology
    2008
    Abstract
    Corrosion of mild steel in aqueous solutions containing hydrogen sulphide was modelled under the condition that an iron sulphide film was formed on the steel surface. In the present model, the iron sulphide forms on the steel surface as a result of a solid state reaction between iron and hydrogen sulphide which has several steps. First a very thin film of iron sulphide nucleates on the steel surface. Then, due to further growth of the initial thin layer, a more porous layer of iron sulphide forms on the initial film. In the present model, it is assumed that mass transfer through the thin iron sulphide layer (i.e. adjacent to the steel substrate) controls the corrosion rate of steel in H 2S... 

    Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method

    , Article Journal of Physical Chemistry C ; Volume 112, Issue 47 , 2008 , Pages 18686-18689 ; 19327447 (ISSN) Hosseini, Z ; Taghavinia, N ; Sharifi, N ; Chavoshi, M ; Rahman, M ; Sharif University of Technology
    2008
    Abstract
    TiO2 deposited on a membrane of Ag fibers was prepared as a photoelectrochemical cell electrode. Ag fibers were made by reduction of Ag complexes on cellulose fibers, followed by burning out the template. TiO 2 photocatalyst layers were grown on the fibers by electrophoretic deposition of TiO2 nanoparticles. Ag fibers could be uniformly deposited. Photocatalytic tests by dye decomposition and electrochemical impedance spectroscopy (EIS) under UV illumination demonstrate that Ag fibers act as a good substrate that provides both high surface area and good separation of photogenerated electron-hole pairs and causes the enhancement of photocatalytic activity in comparison with a thin film of... 

    Improved electron transportation of dye-sensitized solar cells using uniform mixed CNTs-TiO2 photoanode prepared by a new polymeric gel process

    , Article Journal of Nanoparticle Research ; Volume 15, Issue 9 , 2013 ; 13880764 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Masihi, N ; Akhlaghi, M. H ; Sharif University of Technology
    2013
    Abstract
    A new facile strategy for fabrication of high surface area electrode in the form of mixtures of coated carbon nanotubes (CNTs) and TiO2 nanoparticles with various weight ratios is reported. The so-called polymeric gel process was used to deposit thick film containing uniform distribution of TiO2 nanoparticles and coated CNTs with high porosity by dip coating for dye-sensitized solar cells (DSSCs) applications. Based on simultaneous differential thermal analysis, the minimum annealing temperature to obtain inorganic- and organic-free films was determined at 500°C. X-ray diffraction analysis revealed that deposited films were composed of primary nanoparticles with crystallite size in the range... 

    Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    , Article Electrochimica Acta ; Volume 89 , February , 2013 , Pages 90-97 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film... 

    Low temperature self-agglomeration of metallic Ag nanoparticles on silica sol-gel thin films

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 19 , 2008 ; 00223727 (ISSN) Akhavan, O ; Azimirad, R ; Moshfegh, A. Z ; Sharif University of Technology
    2008
    Abstract
    A facile sol-gel synthesis for self-agglomeration of metallic silver nanoparticles, with fcc crystalline structure, on the silica surface in a low annealing temperature has been introduced. X-ray photoelectron spectroscopy (XPS) revealed initial agglomeration (∼30 times greater than the nominal concentration of Ag) of the nanoparticles on the surface of the dried film (100 °C) and also their oxidation as well as easy diffusion (with 0.08 eV required activation energy) into the porous silica thin films, by increasing the annealing temperature (200-400 °C). By raising the Ag concentration from 0.2 to 1.6 mol% in the sol, the average size of the Ag nanoparticles increased from ∼5 to 37 nm...