Loading...
Search for: third-order-shear-deformation-theory
0.006 seconds

    Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory

    , Article Frontiers of Mechanical Engineering ; Volume 6, Issue 4 , December , 2011 , Pages 409-418 ; 20950233 (ISSN) Rezvanil, M. J ; Kargarnovin, M. H ; Younesian, D ; Sharif University of Technology
    Abstract
    The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the thirdorder shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to... 

    A study on the axial stresses of P-FGM, SFGM and E-FGM plates under pressure loading using the energy concept

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 3 , 2010 , Pages 2060-2068 ; 9781617820496 (ISBN) Dastoom Laatleyli, H ; Abedian, A ; Sharif University of Technology
    2010
    Abstract
    In this study the energy concept along with the classical plate theory (CPT), first and third order shear deformation theories (FSDT and TSDT) are used to predict the large deflection and through the thickness stresses of a FGM plate. For defining the volume fraction of the FGM constituent materials three different functions are considered; simple power-law (PFGM), exponential (E-FGM) and sigmoid (S_FGM) functions. Power-law and exponential functions are commonly used tocontrol the variations of properties of FGMs. However, with both functions, a stress concentration appears due to abruptchange of the volume fraction of the constituents. Therefore, a sigmoid FGM is used to define a new... 

    Application of third order shear deformation theory in buckling analysis of 2D-functionally graded cylindrical shell reinforced by axial stiffeners

    , Article Composites Part B: Engineering ; Volume 79 , September , 2015 , Pages 236-253 ; 13598368 (ISSN) Satouri, S ; Kargarnovin, M. H ; Allahkarami, F ; Asanjarani, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This paper presents buckling analysis of a two-dimensional functionally graded cylindrical shell reinforced by axial stiffeners (stringer) under combined compressive axial and transverse uniform distributive load. The shell material properties are graded in the direction of thickness and length according to a simple power law distribution in terms of the volume fractions of the constituents. Primarily, the third order shear deformation theory (TSDT) is used to derive the equilibrium and stability equations. Since there is no closed form solution, the numerical differential quadrature method, (DQM), is applied for solving the stability equations. Initially, the obtained results for an... 

    Dynamic analysis of generally laminated composite beam with a delamination based on a higher-order shear deformable theory

    , Article Journal of Composite Materials ; Volume 49, Issue 2 , 2015 , Pages 141-162 ; 00219983 (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this study, the dynamic response of the laminated composite beam with arbitrary lay-ups has been investigated within the framework of the third-order shear deformation theory using the finite element method. A new three-nodded finite element compliant with the theory is introduced next. To deal with the dynamic contact between the delaminated segments, unilateral contact constraints are employed in conjunction with Lagrange multiplier method. Furthermore, the Poisson's effect is incorporated in the formulation of the beam constitutive equation. Also, the higher-order inertia effects and material couplings (flexure-tensile, flexure-twist and tensile-twist couplings) are considered in the... 

    Nonlinear analysis of FGM plates under pressure loads using the higher-order shear deformation theories

    , Article Composite Structures ; Volume 89, Issue 3 , 2009 , Pages 333-344 ; 02638223 (ISSN) Sarfaraz Khabbaz, R ; DehghanManshadi, B ; Abedian, A ; Sharif University of Technology
    2009
    Abstract
    In this study, the energy concept along with the first- and third-order shear deformation theories (FSDT and TSDT) are used to predict the large deflection and through the thickness stress of FGM plates. These responses are studied and discussed as a function of plate thickness and the order "n" of a power law function which is considered for the through the thickness variation of the properties of the FGM plate. The results show that the energy method powered by the FSDT and FSDT is capable of predicting the effects of plate thickness on the deformation and the through the thickness stress. Here, also the effects of power "n" on the plate response is clearly depicted. Notably, the... 

    Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation

    , Article Thin-Walled Structures ; Volume 154 , 2020 Shariati, A ; Ghabussi, A ; Habibi, M ; Safarpour, H ; Safarpour, M ; Tounsi, A ; Safa, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This is a fundamental study on the nonlinear vibrations considering large amplitude in multi-sized hybrid Nano-composites (MHC) disk (MHCD) relying on nonlinear elastic media and located in an environment with gradually changed temperature feature. Carbon fibers (CF) or carbon nanotubes (CNTs) in the macro or nano sizes respectively are responsible for reinforcing the matrix. For prediction of the efficiency of the properties MHCD's modified Halpin-Tsai theory has been presented. The strain-displacement relation in multi-sized laminated disk's nonlinear dynamics through applying Von Karman nonlinear shell-theory and using third-order-shear-deformation-theory (TSDT) is determined. The energy... 

    Analysis of functionally graded cylindrical panel under mechanical loading

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 10 PART B , 2008 , Pages 867-876 ; 0791843041 (ISBN); 9780791843048 (ISBN) Ghaderi, P ; Fathizadeh, A ; Bankehsaz, M ; Sharif University of Technology
    2008
    Abstract
    In this paper a semi-analytical method is developed to analyze functionally graded cylindrical panels. In this method, the radial domain is divided into some finite sub-domains and the material properties are assumed to be constant in each subdomain. Imposing the continuity conditions at the interface of the adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are derived. Solving the linear algebraic equations, the elastic response for the thick-walled FG cylindrical panel is obtained. The method can be used for all material properties variations but in present study, material properties are assumed vary with Mori-Tanaka estimation. Results...