Loading...
Search for:
time-averaged-wall-shear-stress
0.005 seconds
Numerical Investigation of Hypertension in Plaque Formation and Growth in Human Aorta
, M.Sc. Thesis Sharif University of Technology ; Firoozabadi, Bahar (Supervisor)
Abstract
Nowadays, cardiovascular diseases are among the most prevalent cause of death worldwide. Besides, atherosclerosis is a cardiovascular disease happening with the continuous narrowing of vessels, especially medium and large-sized arteries. Moreover, the human aorta is vulnerable to this phenomenon. Atherosclerosis happens when the excess LDL in the blood flow penetrates the arterial wall. Then, the LDL is oxidized, thereby recruiting monocytes as the response against oxidized LDL. After monocytes enter the arterial wall, they differentiate and become macrophages. Macrophages then transform into foam cells by ingesting the oxidized LDL. The fatty foam cells are eventually responsible for the...
Effects of Heart Dynamic Motion on Blood Hemodynamics and LDL Accumulation in Coronary Bifurcation
, M.Sc. Thesis Sharif University of Technology ; Firoozabadi, Bahar (Supervisor)
Abstract
In this thesis, the effect of heart dynamic motion and pulsatile inflow on blood hemodynamics and LDL permeation into the arterial wall in a 3-D coronary artery bifurcation was investigated. To determine the effect of each factor alone and simultaneous effect of both factors i.e. heart dynamic motion and pulsatile inflow, flow simulations were performed in four cases i.e. steady-static, steady-dynamic, pulsatile-static, and pulsatile-dynamic. The results of flow simulations showed that dynamic geometry and pulsatile inflow have considerable impact on temporal variations of wall shear stress (WSS), even though the effect of pulsatile inflow on WSS variation dominates over the effect of...
Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition
, Article Computers in Biology and Medicine ; Volume 133 , 2021 ; 00104825 (ISSN) ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Atherosclerosis as a common cardiovascular disease is a result of both adverse hemodynamics conditions and monocyte deposition within coronary arteries. It is known that the adhesion of monocytes on the arterial wall and their interaction with the vascular surface are one of the main parameters in the initiation and progression of atherosclerosis. In this work, hemodynamic parameters and monocyte deposition have been investigated in a 3D computational model of the Left Anterior Descending coronary artery (LAD) and its first diagonal branch (D1) under the heart motion. A one-way Lagrangian approach is performed to trace the monocyte particles under different blood flow regimes and heart motion...