Loading...
Search for: time-dependent-transport
0.005 seconds

    A new approach for solution of time dependent neutron transport equation based on nodal discretization using MCNPX code with feedback

    , Article Annals of Nuclear Energy ; Volume 133 , 2019 , Pages 519-526 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper proposes a new method for solving the time-dependent neutron transport equation based on nodal discretization using the MCNPX code. Most valid nodal codes are based on the diffusion theory with differences in approximating the leakage term until now. However, the Monte Carlo (MC) method is able to estimate transport parameters without approximations usual in diffusion method. Therefore, improving the nodal approach via the MC techniques can substantially reduce the errors caused by diffusion approximations. In the proposed method, the reactor core is divided into nodes of arbitrary dimensions, and all terms of the transport equation e.g. interaction rates and leakage ratio are... 

    A time dependent Monte Carlo approach for nuclear reactor analysis in a 3-D arbitrary geometry

    , Article Progress in Nuclear Energy ; Volume 115 , 2019 , Pages 80-90 ; 01491970 (ISSN) Mazaher, M. G ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A highly reliable tool for transient simulation is vital in the safety analysis of a nuclear reactor. Despite this fact most tools still use diffusion theory and point-kinetics that involve many approximation such as discretization in space, energy, angle and time. However, Monte Carlo method inherently overcomes these restrictions and provides an appropriate foundation to accurately calculate the parameters of a reactor. In this paper fundamental parameters like multiplication factor (K eff ) and mean generation time (t G ) are calculated using Monte Carlo method and then employed in transient analysis for computing the neutron population, proportional to K eff , during a generation time... 

    Implementation of a dynamic Monte Carlo method for transients analysis with thermal-hydraulic feedbacks using MCNPX code

    , Article Annals of Nuclear Energy ; Volume 130 , 2019 , Pages 240-249 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Transient analysis which is vital in safety analysis requires a reliable calculation method. Most valid tools use diffusion theory with many approximations by now. However, the Monte Carlo method inherently overcomes these approximations and accurately calculates the parameters of a reactor. In this paper, a new time-dependent transport approach is described to simulate the nuclear reactor dynamic correctly using the MCNPX code. In this approach the fundamental parameters of a nuclear reactor like multiplication factor (K eff ) and mean generation time (t G ) are calculated using MCNPX code. They are then employed in the formulas to compute neutron population, proportional to K eff , during...