Loading...
Search for: tin-compounds
0.005 seconds

    Two-dimensional materials for gas sensors: from first discovery to future possibilities

    , Article Surface Innovations ; Volume 6, Issue 4-5 , 2018 , Pages 205-230 ; 20506252 (ISSN) Barzegar, M ; Tudu, B ; Sharif University of Technology
    ICE Publishing  2018
    Abstract
    Semiconductor gas sensors have been developed so far on empirical bases, but now recent innovative materials for advancing gas sensor technology have been made available for further developments. Two-dimensional (2D) materials have gained immense attention since the advent of graphene. This attention inspired researchers to explore a new family of potential 2D materials. The superior structural, mechanical, optical and electrical properties of 2D materials made them attractive for next-generation smart device applications. There are considerable improvements and research studies on graphene, molybdenum disulfide (MoS2), tungsten disulfide (WS2), tin sulfide (SnS2), black phosphorus and other... 

    High-Photoresponsive backward diode by two-dimensional SnS2/Silicon heterostructure

    , Article ACS Photonics ; Volume 6, Issue 3 , 2019 , Pages 728-734 ; 23304022 (ISSN) Hosseini, S. A ; Esfandiar, A ; Iraji Zad, A ; Hosseini Shokouh, S. H ; Mahdavi, S. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Two-dimensional semiconductor materials can be combined with conventional silicon-based technology and sort out part of the future challenges in semiconductor technologies due to their novel electrical and optical properties. Here, we exploit the optoelectronics property of the silicon/SnS2 heterojunction and present a new class of backward diodes using a straightforward fabrication method. The results indicate an efficient device with fast photoresponse time (5-10 μs), high photoresponsivity (3740 AW-1), and high quantum efficiency (490%). We discuss device behavior by considering the band-to-band tunneling model and band bending characteristics of the heterostructure. This device structure... 

    Evaluating Cu2SnS3nanoparticle layers as hole-transporting materials in perovskite solar cells

    , Article ACS Applied Energy Materials ; Volume 4, Issue 6 , 2021 , Pages 5560-5573 ; 25740962 (ISSN) Heidariramsheh, M ; Mirhosseini, M ; Abdizadeh, K ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    We investigate the use of simple nontoxic Cu2SnS3 (CTS) nanoparticles (NPs) as low-cost dopant-free hole-transport materials (HTMs) a substitute for spiro-OMeTAD in an n-i-p mesoscopic architecture of perovskite solar cells (PSCs). Besides, this work confirms the critical role of the crystalline phase of CTS NPs on the performance of the device. Using a facile one-pot heating-up procedure, pure zincblende and wurtzite structures of CTS NPs were obtained by sulfur element and thiourea as the sulfur source, respectively, and were dispersed in chloroform to make very stable nonpolar ink that is compatible with the perovskite. Nanoparticles with the wurtzite crystal phase showed much better... 

    A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells

    , Article Solar Energy ; Volume 167 , 2018 , Pages 165-171 ; 0038092X (ISSN) Haghighi, M ; Minbashi, M ; Taghavinia, N ; Kim, D. H ; Mahdavi, S. M ; Kordbacheh, A. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    CdS is conventionally used as the n-type buffer layer in chalcopyrite (CIG(S, Se)) and Kesterite (CZT(S, Se)) solar cells. CdS is toxic and there are wide attempts to find substitutes for it. Here, we suggest SnS2 as a possible alternative. SnS2 films were deposited by pulsed laser deposition (PLD), characterized to estimate carrier concentration and electron affinity values, and the obtained values were used to model a CZT(S, Se) solar cell. The experimental values of a benchmark CZT(S, Se) cell with efficiency of 12.3% were employed to obtain the density and energy position of defects in CZT(S, Se) and validating the model. We observed that SnS2 results in almost identical performance as... 

    Surfactant-free stable SnS2 nanoparticles dispersion for deposition of device-quality films

    , Article Thin Solid Films ; Volume 669 , 2019 , Pages 269-274 ; 00406090 (ISSN) Haghighi, M ; Tajabadi, F ; Mahdavi, S. M ; Mohammadpour, R ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Tin sulfide (SnS2) has recently attracted considerable attention due to its layered structure that may form two dimensional morphologies. It is an n-type semiconductor with band gap and electron affinity similar to CdS and In2S3; therefore can be regarded as an alternative for these materials in thin film solar cells. Here, we synthesis of SnS2 nanoparticles with different morphology in different ratio of water-ethanol mixed solution by solvothermal method, and observe that more ethanol leads to large sheet like morphologies, while water based synthesis results in very small nanosheets. A challenge in wet deposition of device-quality thin films of SnS2 is the requirement for highly dispersed... 

    Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting

    , Article Applied Surface Science ; Volume 440 , 15 May , 2018 , Pages 153-161 ; 01694332 (ISSN) Seza, A ; Soleimani, F ; Naseri, N ; Soltaninejad, M ; Montazeri, S.M ; Sadrnezhaad, S.K ; Mohammadi, M.R ; Moghadam, H.A ; Forouzandeh, M ; Amin, M.H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Highly porous nanocomposites of graphitic-carbon nitride and tin oxide (g-C3N4/SnO2) were prepared through simple pyrolysis of urea molecules under microwave irradiation. The initial amount of tin was varied in order to investigate the effect of SnO2 content on preparation and properties of the composites. The synthesized nanocomposites were well-characterized by XRD, FE-SEM, HR-TEM, BET, FTIR, XPS, DRS, and PL. A homogeneous distribution of SnO2 nanoparticles with the size of less than 10 nm on the porous C3N4 sheets could be obtained, suggesting that in-situ synthesis of SnO2 nanoparticles was responsible for the formation of g-C3N4. The process likely occurred by the aid of the large... 

    One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications

    , Article Journal of Alloys and Compounds ; Volume 782 , 2019 , Pages 38-50 ; 09258388 (ISSN) Asen, P ; Haghighi, M ; Shahrokhian, S ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    SnS2-SnO2 nano-heterostructures are synthesized with two different precursors of thioacetamide (TAA) and thiourea (TU) at various solvent ratios (SR) of ethanol and water by using a facile, economical, scalable, and cost-effective solvothermal method. The obtained products have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer–Emmet–Teller (BET) techniques. It is found that different precursors and various SR values have an influence on the composition and morphologies of the prepared nanostructures, leading to variation in capacitive behavior of the fabricated electrodes.... 

    Pure sulfide Cu2ZnSnS4 layers through a one-step low-temperature PLD technique: Insight into simulation on modified back contact to overcome the barrier of MoS2

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 262 , 2020 Heidariramsheh, M ; Haghighi, M ; Dabbagh, M. M ; Mahdavi, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Targeting on the selenium free, pure sulfide kesterite compound (CZTS) allows retention of the higher band gap nontoxic absorber for a single-junction solar cell. In this work, CZTS thin films were deposited by the PLD method and the Structural/optical properties, as well as Mott–Schottky analysis, were studied at different substrate temperatures. Without undergoing the sulfurization process, the single-phase CZTS thin film is prepared at 300 ℃. In the second step, a numerical simulation is performed using the solar cell capacitance simulator to study the effect of the grading layer of MoS(Se)2 on the rear side of pure sulfide kesterite based solar cells. The device with a MoSe2 coated... 

    Facile and ultra-sensitive voltammetric electrodetection of Hg2+in aqueous media using electrodeposited AuPtNPs/ITO

    , Article Analytical Methods ; Volume 13, Issue 24 , 2021 , Pages 2688-2700 ; 17599660 (ISSN) Bagheri Hariri, M ; Siavash Moakhar, R ; Sharifi Abdar, P ; Zargarnezhad, H ; Shone, M ; Rahmani, A. R ; Moradi, N ; Niksefat, V ; Shayar Bahadori, K ; Dolati, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In this study, we have investigated the use of electrodeposited Au-Pt nanoparticles (AuPtNPs) on indium tin oxide (ITO) for the detection of Hg2+ heavy ions in water samples. The mechanism of AuPtNP electrocrystallization on ITO glass in an aqueous solution containing 0.5 mM HAuCl4 + 0.5 mM H2PtCl6 is described for the first time. The nucleation mechanism of monometallic AuNPs on ITO was found to be progressive; however, a transition from progressive to instantaneous was observed for bimetallic AuPtNPs at elevated overpotentials. The modified ITOs were then assessed for the electrodetection of Hg2+ in aqueous media. It was shown by differential pulse voltammetry (DPV) that the sensitivity of... 

    Electrospun chitosan/polyvinyl alcohol nanocomposite holding polyaniline/silica hybrid nanostructures: An efficient adsorbent of dye from aqueous solutions

    , Article Journal of Molecular Liquids ; Volume 331 , 2021 ; 01677322 (ISSN) Bayat, A ; Tati, A ; Ahmadipouya, S ; Haddadi, S. A ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, the addition of a novel polyaniline (PANI)/silica (SiO2) nanostructure (PSn) in chitosan/polyvinyl alcohol nanofibers (CP) was evaluated to enhance the dye removal capacity of CP. Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) results confirmed the chemical grafting of SiO2 on PANI nanoparticles. Brunauer-Emmett-Teller (BET) results showed a specific surface area of 61 m2 g−1 for the PSn filled CP nanofiber (CP-PSn). FE-SEM and EDS-elemental mapping results showed the uniform dispersibility of PSn in CP nanofibers. After the addition of PSn into CP, the adsorption capacity of... 

    A Study on Optoelectronic Properties of Copper Zinc Tin Sulfur Selenide: A Promising Thin-Film Material for Next Generation Solar Technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al-Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    A study on optoelectronic properties of copper zinc tin sulfur selenide: A promising thin-film material for next generation solar technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    Optoelectrical and structural characterization of Cu2SnS3 thin films grown via spray pyrolysis using stable molecular ink

    , Article Solar Energy ; Volume 224 , 2021 , Pages 218-229 ; 0038092X (ISSN) Heidariramsheh, M ; Gharabeiki, S ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This work focused on the spray pyrolysis deposition of Cu2SnS3 (CTS) thin films using a stable basic solution. The effect of the most important parameters including the substrate temperature and copper concentration on the structural, optical and electrical properties of as-deposited thin films was investigated. Qualified thin films with suitable microstructure and composition could be deposited at 370℃. XRD and Raman analysis while confirming the pure CTS film formation, show that as the Cu/Sn decreases, the crystal structure layers are changed from the tetragonal phase to the cubic phase mixed with Sn-rich phases. The optical study shows its band gap between 1.08 and 1.2 eV for different... 

    Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 178 , 2018 , Pages 124-132 ; 10111344 (ISSN) Faraji, M ; Mohaghegh, N ; Abedini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A series of g-C3N4-SnO2/TiO2 nanotubes/Ti plates were fabricated via simple dipping of TiO2 nanotubes/Ti in a solution containing SnCl2 and g-C3N4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C3N4-SnO2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis... 

    The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology

    , Article Biosensors and Bioelectronics ; Volume 105 , 15 May , 2018 , Pages 58-64 ; 09565663 (ISSN) Shariati, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50 nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10 µM. The detection limit of...