Loading...
Search for: tio2-nanotube
0.006 seconds
Total 23 records

    Morphology control in oxygen-rich nanotubular titania for enzyme-free glucose detection

    , Article Surfaces and Interfaces ; 2021 ; 24680230 (ISSN) Saadati, A ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The necessity of research in food and nutrition and the emergence of diabetes mellitus call for fast and efficient glucose detection. Here, series of highly sensitive non-enzymatic photoelectrochemical glucose sensor based on engineered titanium dioxide nanotube arrays has been synthesized using a simple electrochemical approach to tune nanotubes morphology in a way that the highest sensitivity factor (525.5 µAmM−1cm−2) and saturation concentrations (0.18 mM) achieved in the photoelectrochemical sensor. The formation of oxygen-rich titanium oxide was confirmed by several techniques. Dependent on the growth condition, nanotube length changed from 1.9 to 8.4 µm while their inner diameter... 

    Morphology control in oxygen-rich nanotubular titania for enzyme-free glucose detection

    , Article Surfaces and Interfaces ; Volume 28 , 2022 ; 24680230 (ISSN) Saadati, A ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The necessity of research in food and nutrition and the emergence of diabetes mellitus call for fast and efficient glucose detection. Here, series of highly sensitive non-enzymatic photoelectrochemical glucose sensor based on engineered titanium dioxide nanotube arrays has been synthesized using a simple electrochemical approach to tune nanotubes morphology in a way that the highest sensitivity factor (525.5 µAmM−1cm−2) and saturation concentrations (0.18 mM) achieved in the photoelectrochemical sensor. The formation of oxygen-rich titanium oxide was confirmed by several techniques. Dependent on the growth condition, nanotube length changed from 1.9 to 8.4 µm while their inner diameter... 

    Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays

    , Article Electrochimica Acta ; Volume 270 , 2018 , Pages 245-255 ; 00134686 (ISSN) Peighambardoust, N. S ; Khameneh Asl, S ; Mohammadpour, R ; Khameneh Asl, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Electrochemical activity of TiO2 nanotube arrays (NTAs) is restricted by a wide band gap of TiO2. To overcome this restriction, we considered systematic research on two effective methods of doping of TiO2 NTAs such as the N-doping and electrochemical reductive doping and predicting the proper application of them. Band gap narrowing was occurred from 3.16 eV for undoped TiO2 NTAs to 2.9 and 2.7 eV at N-doped and self-doped TiO2 ones respectively. The electrochemical responses of the TiO2 NTAs before and after doping were examined by cyclic Voltammetry (CV) curve. To understand the electrochemical behavior of the undoped and doped TiO2 NTAs, electrochemical impedance spectroscopy (EIS) was... 

    Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes

    , Article Solar Energy ; Volume 184 , 2019 , Pages 115-126 ; 0038092X (ISSN) Peighambardoust, N. S ; Khameneh Asl, S ; Mohammadpour, R ; Khameneh Asl, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Although morphological disorder of nanotube structure is further down than the nanoparticular electrode, its density of traps are the hindering effects in the charge transport. In this study, crack-free TiO2 nanotube membranes, which obtained through a re-anodizing process, are fixed on transparent fluorine–tin-oxide glass by applying a few drops of Titanium Isopropoxide without needing the TiO2 powder paste. Front-side illuminated dye sensitized solar cells fabricated by undoped, N-doped and blue TiO2 nanotube membranes are investigated. The electrical characteristics of TiO2 nanotube based dye sensitized solar cells are followed by theoretical analysis using simple one-diode model.... 

    Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: Good for photocatalysis, bad for electron transfer

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 50 , 2017 ; 00223727 (ISSN) Mohammadpour, R ; Sharif University of Technology
    Abstract
    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the... 

    Fabrication of self-organised highly ordered titanium oxide nanotube arrays by anodic oxidation and characterisation

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 297-309 ; 17469392 (ISSN) Mohammadpour, R ; Ahadian, M. M ; Iraji Zad, A ; Taghavinia, N ; Dolati, A. G ; Sharif University of Technology
    2010
    Abstract
    Self-organised and vertically oriented titanium oxide nanotube array (TNTA) has been synthesised by potentiostat anodisation of Ti foil in fluoride-based electrolyte. By varying the anodisation voltage from 8 V to 24 V it was possible to gradually change the topologies of nanotubes. The size of TNTAs was measured using SEM images and also determined based on a non-destructive optical method. In addition, photoelectrochemical properties of nanotubular TiO2/Ti electrodes were examined by anodic photocurrent response, potentiodynamic polarisation measurements and electrochemical impedance spectroscopy. A general equivalent circuit model was proposed for photoelectrochemical system consists of... 

    Effect of sodium carbonate as an additive on the morphology and photocatalytic activity of TiO2 nanotubes

    , Article Materials Research Bulletin ; Volume 95 , 2017 , Pages 169-176 ; 00255408 (ISSN) Alitabar, M ; Yoozbashizadeh, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The major purpose of this research is increasing the photocatalytic activity of TiO2 nanotube arrays by doping with sodium and carbon for using in water splitting as photoanode. The synthesized TiO2 nanotubes (TNA) were characterized using FESEM (Field Emission Scanning Electron Microscope), XRD (X-ray Diffraction), DRS (Diffraction Reflection Spectroscopy) and XPS test (X-ray Photoelectron Spectroscopy) analyses. The results of FTIR and XPS confirmed the presence of sodium and carbon in the lattice of TNA as dopants. Moreover, the DRS test showed the decrease in the band gap energy of TNA from 3.20 to ∼2.88 eV; uv-visible test exhibited extension in the absorption edge of pure TiO2... 

    Study on the morphology and photocatalytic activity of TiO2 nanotube arrays produced by anodizing in organic electrolyte with Ni, Na, and C as dopants

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 12 , 2018 , Pages 3883-3893 ; 14328488 (ISSN) Alitabar, M ; Yoozbashizadeh, H ; Sharif University of Technology
    Abstract
    The main purpose of this research work is to investigate the effect of nickel as metal dopant on the morphology and photocatalytic activity of TiO2 nanotube arrays synthesized in the organic electrolyte by anodizing process containing sodium carbonate as an additive (TNAS). In order to characterize the synthesized nanotubes, various analyses such as FESEM, XRD, FTIR, XPS, DRS, and EIS were applied. The results of XPS and FTIR tests evaluate the participation of sodium (Na), nickel (Ni), and carbon (C) in the lattice of nanotubes as dopants. According to the DRS and UV-visible tests results, the band gap energy of TiO2 nanotube arrays decreases from 3.20 to ~ 2.64 eV as well as the absorption... 

    Highly-ordered TiO2 nanotubes decorated with Ag2O nanoparticles for improved biofunctionality of Ti6Al4V

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 1008-1017 ; 02578972 (ISSN) Sarraf, M ; Dabbagh, A ; Abdul Razak, B ; Mahmoodian, R ; Nasiri Tabrizi, B ; Madaah Hosseini, H. R ; Saber Samandari, S ; Abu Kasim, N. H ; Abdullah, H ; Sukiman, N. L ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The nanotubular arrays of titanium dioxide (TiO2 NTs) have recently received considerable interest for fabrication of dental and orthopedic implants. However, their antibacterial activity requires substantial improvement for the potential infections minimization, without compromise of their biocompatibility. In this work, TiO2 NTs were developed on Ti6Al4V substrates via anodization at a constant potential of 60 V for 60 min, followed by heat treatment at 500 °C for 90 min. Physical vapor deposition (PVD) was further employed to decorate silver oxide nanoparticles (Ag2O NPs) on the nanotubular edges. The results indicated that the highly-ordered TiO2 NTs with decorated Ag2O NPs could promote... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Cellulose nanofiber-based ethylene scavenging antimicrobial films incorporated with various types of titanium dioxide nanoparticles to extend the shelf life of fruits

    , Article ACS Applied Polymer Materials ; Volume 4, Issue 7 , 2022 , Pages 4765-4773 ; 26376105 (ISSN) Riahi, Z ; Ezati, P ; Rhim, J. W ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    TiO2 nanotubes (TNTs) were synthesized hydrothermally and modified by Cu2O using a sol-gel method to provide photocatalytic activity in visible light. Cellulose nanofiber (CNF)-based films were prepared by adding TiO2, TNTs, and Cu2O-modified TNT (TNT-Cu2O). The TiO2-based nanoparticles (TiO2, TNTs, and TNT-Cu2O) were uniformly distributed in the base polymer to make compatible and flexible films. The incorporation of nanoparticles significantly enhanced the UV-shielding properties of the film while slightly decreasing the transparency. Incorporating nanofillers improved the film's mechanical and water resistance properties depending on the nanoparticle type. The TNT-Cu2O-added CNF film... 

    Ag/TiO2-nanotube plates coated with reduced graphene oxide as photocatalysts

    , Article Surface and Coatings Technology ; Volume 288 , 2016 , Pages 144-150 ; 02578972 (ISSN) Faraji, M ; Mohaghegh, N ; Sharif University of Technology
    Elsevier 
    Abstract
    RGO/Ag/TiO2-nanotubes/Ti plates with high photocatalytic activity were fabricated via electrochemical reduction of graphene oxide on Ag/TiO2-nanotubes. The loading of silver nanoparticles was carried out by electroless reduction of Ag1+ onto TiO2 nanotubes previously formed by anodizing titanium. Microstructure studies show that reduced graphene oxide (RGO) layers having high surface area have been deposited on the as-prepared Ag/TiO2-nanotubes, where nanoparticles of Ag had grown on the walls of TiO2-nanotubes. The results of photocatalytic experiments demonstrate that the RGO/Ag/TiO2-nanotubes/Ti plate exhibits significantly enhanced photocatalytic activity for the photocatalytic... 

    Intrinsically Ru-doped suboxide TiO2nanotubes for enhanced photoelectrocatalytic H2generation

    , Article Journal of Physical Chemistry C ; Volume 125, Issue 11 , 2021 , Pages 6116-6127 ; 19327447 (ISSN) Khorashadizade, E ; Mohajernia, S ; Hejazi, S ; Mehdipour, H ; Naseri, N ; Moradlou, O ; Moshfegh, A. Z ; Schmuki, P ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    In the present research, we investigate the synergistic effects of Ru-doping and Ar/H2 reduction treatment on the photoelectrochemical water splitting performance and hydrogen evolution rate of TiO2 nanotube array photoelectrodes. The Ti-Ru alloy with 0.2 at. % Ru was used to grow anodic self-organized Ru-doped TiO2 nanotube layers. An ideal synergy between Ar/H2 reduction treatment and Ru-doping results in the extended absorption toward the visible light region and improved photoelectrocatalytic activity. The black Ru-doped TiO2-x photoanode's water splitting rate improves remarkably (∼ninefold) compared to the black TiO2-x sample (∼twofold). Moreover, the black Ru-doped TiO2-x photoanode... 

    Fabrication of nanoporous nickel oxide by de-zincification of Zn-Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors

    , Article Electrochimica Acta ; Volume 100 , 2013 , Pages 133-139 ; 00134686 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    2013
    Abstract
    NiO-ZnO/TiO2NTs electrodes were synthesized by the electrodeposition of Zn-Ni onto TiO2 nanotubes, dealloying in a concentrated alkaline solution and finally calcination of the resulting Zn(OH)2-Ni(OH)2/TiO2NTs at 300 C. Morphology of the electrodeposited nanostructures was studied using scanning electron microscopy (SEM) while their electrochemical characterizations were carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge procedures. The SEM analysis revealed the nanoporous/cracked structures of the NiO-ZnO/TiO2NTs obtained at the electroplating time of 20 min. The EIS studies showed that nanoporous/cracked structures of... 

    Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor

    , Article Journal of Electroanalytical Chemistry ; Volume 691 , 2013 , Pages 51-56 ; 15726657 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    2013
    Abstract
    PANI/Pd/TiO2NTs electrodes with highly porous structures and good capacitive characteristics were prepared by electrodeposition of polyaniline on palladium nanoparticles loaded TiO2 nanotubes. The loading of small palladium nanoparticles was carried out by sonochemical reduction of Pd+2 onto TiO2NTs and affected the ordered growth of PANI, reducing the charge transfer resistance and increasing surface area of PANI. The specific capacitance and the stability of electrode showed improvements. The results illustrated that the specific capacitance of these electrodes was around 1060 F g-1 in 1.0 M H2SO4 electrolyte as measured at a constant current of 2.0 A g-1, whereas it was 210 F g-1 for the... 

    Hydroxyapatite based and anodic titania nanotube biocomposite coatings: fabrication, characterization and electrochemical behavior

    , Article Surface and Coatings Technology ; Volume 287 , 2016 , Pages 67-75 ; 02578972 (ISSN) Ahmadi, S ; Mohammadi, I ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The main challenges of biological implants are suitable strength, adhesion, biocompatibility and corrosion resistance. This paper discusses fabrication, characterization and electrochemical investigation of anodized Ti6Al4V without and with a hydroxyapatite (HA) layer, HA/TiO2 nanoparticles (NPs) and HA/TiO2 nanotubes (HA/anodized). X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS) were used to characterize and compare properties of different samples. Dense HA with uniform distribution and 12.8 ± 2 MPa adhesive strength enhanced to 19.2 ± 4 MPa by the addition of TiO2 nanoparticles and enhanced to 23.1 ± 4 MPa by the... 

    How does cobalt phosphate modify the structure of TiO2 nanotube array photoanodes for solar water splitting?

    , Article Catalysis Today ; Volume 335 , 2019 , Pages 306-311 ; 09205861 (ISSN) Maghsoumi, A ; Naseri, N ; Calloni, A ; Bussetti, G ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    TiO2 nanotube arrays (TNA) have been modified by cobalt phosphate (CoPi) through potentiostatic electrodeposition method. Different samples have been prepared by changing the loaded CoPi through the deposition time from 10 to 960 min. Formed catalytic materials have been characterized by different methods. Although charge transfer resistance of the CoPi/TNA photoanodes have been decreased from 5.5 to 4.0 kΩ by increasing the deposition time from 5 to 60 min, the maximum photoresponse was obtained for 10 min CoPi deposition leading to 24% more photocurrent compare to bare TNA which proposed optimum value for cobalt phosphate decoration. Based on field emission scanning electron microscopy... 

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Synergistic enhancement of photocatalytic antibacterial effects in high-strength aluminum/TiO2 nanoarchitectures

    , Article Ceramics International ; Volume 46, Issue 15 , October , 2020 , Pages 24267-24280 Mesbah, M ; Sarraf, M ; Dabbagh, A ; Nasiri Tabrizi, B ; Paria, S ; Banihashemian, S. M ; Bushroa, A. R ; Faraji, G ; Tsuzuki, T ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Unlike gold and silver, aluminum shows a localized surface plasmon resonance (LSPR) over a wide spectral range from ultraviolet (UV) to the visible region. Herein, we demonstrate a new process to optically couple TiO2 nanotubes (NTs) with a high-strength aluminum substrate, to achieve a synergistic enhancement of photocatalytic antibacterial effects through controlled LSPR of aluminum. The high-strength aluminum substrate was produced by tubular channel angular pressing (TCAP). Their LSPR was tailored through the formation of superficial nano-concave arrays (NCAs) with desired concave diameters. A layer of aligned TiO2 NTs was fabricated on the surface of aluminum nano-concave arrays (Al...