Loading...
Search for: tip-surface-interaction
0.009 seconds

    Temperature dependence study of nonocontact AFM images using molecular dynamics simulations [electronic resource]

    , Article Int. Journal of Modern Physics ; 2012, Vol. 5, pp. 418-432 Nejat Pishkenari, H. (Hossein) ; Meghdar, Ali ; Sharif University of Technology
    Abstract
    The effect of temperature on the noncontact atomic force microscopy (NC-AFM) surface imaging is investigated with the aid of molecular dynamics (MD) analysis based on the Sutton-Chen (SC) interatomic potential. Particular attention is devoted to the tip and sample flexibility at different temperatures. When a gold coated probe is brought close to the Au (001) surface at high temperatures, the tip and surface atoms are pulled together and their distance becomes smaller. The tip and sample atoms displacement varies in the different environment temperatures and this leads to the different interaction forces. Along this line, to study the effect of temperature on the resulting images, we have... 

    Atomic interactions between metallic tips and surfaces in NC-AFM

    , Article Journal of Physics D: Applied Physics ; Volume 48, Issue 12 , February , 2015 ; 00223727 (ISSN) Pishkenari, H. N ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    In this paper, the atomic-scale interactions between metallic tips and samples in noncontact atomic force microscopy (NC-AFM) are studied using molecular dynamics simulations. The effects of the tip and sample materials, the surface plane direction and the lateral position of the tip with respect to the sample, on the interaction force and the dissipated energy, are investigated. The simulations conducted demonstrate that, generally, we can classify the possible outcomes for the dynamics due to the tip-surface interactions into four major categories. The first category includes all cases in which there are no considerable instabilities in tip-surface interactions, leading to negligible... 

    AFM stochastic analysis of surface twisted nanograin chains of iron oxide: a kinetic study

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 6 , 2009 ; 00223727 (ISSN) Akhavan, O ; Azimirad, R ; Sharif University of Technology
    2009
    Abstract
    We have studied the stochastic parameters of surface iron oxide nanograin chains, 97 nm in diameter and 2.4 νm in length, prepared at different annealing temperatures, using atomic force microscopy (AFM) spectral analysis. In this regard, the roughness of the thin films including self-assembled twisted nanograin chains has been analysed and characterized using the height-height correlation function, the roughness exponent as well as the power spectrum density of the AFM profiles and their gradient, for the different annealing temperatures. The tip convolution effect on the stochastic parameters under study has also been investigated. The kinetics of the formation of nanograins on the film...