Loading...
Search for: tissue-engineering-applications
0.006 seconds

    Bioresorbable composite polymeric materials for tissue engineering applications

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2020 Hajebi, S ; Mohammadi Nasr, S ; Rabiee, N ; Bagherzadeh, M ; Ahmadi, S ; Rabiee, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    This review covers the development of bioresorbable polymeric composites for applications in tissue engineering. Various commercially available bioresobable polymers are described, with emphasis on recent bioresorbable composites based on natural and synthetic polymers. Bioresorbable polymers contain hydrolyzable bonds, which are subjected to chemical degradation via either reactive hydrolysis or enzyme-catalyzed active hydrolysis. For synthetic polymers, chemical hydrolysis is the most important mode of degradation. The degradation rate can be controlled by varying the molecular weight and crystallinity. Examples of bioresorbable polymers are: polyurethane, poly(D,L)lactide,... 

    Bioresorbable composite polymeric materials for tissue engineering applications

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 70, Issue 13 , 2021 , Pages 926-940 ; 00914037 (ISSN) Hajebi, S ; Mohammadi Nasr, S ; Rabiee, N ; Bagherzadeh, M ; Ahmadi, S ; Rabiee, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    This review covers the development of bioresorbable polymeric composites for applications in tissue engineering. Various commercially available bioresobable polymers are described, with emphasis on recent bioresorbable composites based on natural and synthetic polymers. Bioresorbable polymers contain hydrolyzable bonds, which are subjected to chemical degradation via either reactive hydrolysis or enzyme-catalyzed active hydrolysis. For synthetic polymers, chemical hydrolysis is the most important mode of degradation. The degradation rate can be controlled by varying the molecular weight and crystallinity. Examples of bioresorbable polymers are: polyurethane, poly(D,L)lactide,... 

    Preparation of PVA nanocomposites using salep-reduced graphene oxide with enhanced mechanical and biological properties

    , Article RSC Advances ; Volume 5, Issue 112 , 2015 , Pages 92428-92437 ; 20462069 (ISSN) Pourjavadi, A ; Pourbadiei, B ; Doroudian, M ; Azari, S ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Salep, known as a biodegradable polysaccharide, is hydrolyzed and used as both a reducing agent and stabilizer for graphene oxide (GO). The functionalized reduced graphene oxide (f-rGO) is homogenously dispersed in an aqueous solution of poly(vinyl alcohol) (PVA). PVA based hydrogel and film nanocomposites are prepared and proposed as new biomaterials for tissue engineering applications. The mechanical properties of the film nanocomposites are investigated with varying content of f-rGO, glycerol and citric acid as a reinforcing agent, a plasticizer agent and a cross linking agent respectively. For the first time, chemically cross linked PVA hydrogels are synthesized using... 

    Effect of different bases and neutralization steps on porosity and properties of collagen-based hydrogels

    , Article Polymer International ; Volume 59, Issue 1 , 2010 , Pages 36-42 ; 09598103 (ISSN) Pourjavadi, A ; Kurdtabar, M ; Sharif University of Technology
    Abstract
    The aim of the work reported was to investigate the effect of bases and neutralization steps on hydrogel microstructures. A series of porous hydrogels with various pore sizes were prepared by neutralizing a conventional hydrogel after gel formation. Scanning electron microscopy was used to characterize the microstructure of the porous hydrogels. The morphology of the samples showed the pores were induced into the hydrogels by water evaporation and gas release resulting from the neutralization process. Experimental results indicated that the hydrogels had an absorbency of 200-220 and 48-50 g g-1 for distilled water and sodium chloride solutions, respectively. A simple method was used to... 

    Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method

    , Article Materials Research Express ; Volume 6, Issue 11 , 2019 ; 20531591 (ISSN) Shamloo, A ; Kamali, A ; Bahrani Fard, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Three-dimensional porous scaffolds are essential in tissue engineering applications. One of the most conventional methods to form porosity in scaffolds is freeze-drying, which is not energy efficient and cost effective. Therefore in this work, it was experimentally investigated whether gelatin, with its unique mechanical properties and cell binding applications, could be used as a comprising polymer of scaffolds with porous structure made by the freeze-gelation method. Chitosan, gelatin and chitosan/gelatin scaffolds were fabricated by the freeze-gelation method and their behaviors, determined by analysis of scanning electron microscopy images, Fourier transform infrared spectroscopy,... 

    Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study

    , Article Materials Science and Engineering C ; Volume 113 , 2020 Afjoul, H ; Shamloo, A ; Kamali, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, fabrication of a three-dimensional porous scaffold was performed using freeze gelation method. Recently, fabrication of scaffolds using polymer blends has become common for many tissue engineering applications due to their unique tunable properties. In this work, we fabricated alginate-gelatin porous hydrogels for wound healing application using a new method based on some modifications to the freeze-gelation method. Alginate and gelatin were mixed in three different ratios and the resulting solutions underwent freeze gelation to obtain 3D porous matrices. We analyzed the samples using different characterization tests. The scanning electron microscopy (SEM) results indicated... 

    A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application

    , Article Carbohydrate Polymers ; Volume 245 , 2020 Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the article, a bilayer nanocomposite scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) has been prepared via combining electrospinning, in situ gas foaming, in situ crosslinking and freeze drying methods. The physicochemical and mechanical properties, as well as thermal stability of the proposed composite, have been investigated by SEM, FTIR, XRD, tensile, and TGA analysis. The data indicate that structure and degree of crosslinking play a vital role in adjusting the physical and mechanical properties of composite scaffolds. Further, the authors find a favorable adipose-derived mesenchymal stem cell's (AMSC) attachment and distribution within this novel... 

    Induced cell migration based on a bioactive hydrogel sheet combined with a perfused microfluidic system

    , Article Biomedical Materials (Bristol) ; Volume 15, Issue 4 , May , 2020 Jafarkhani, M ; Jafarkhani, M ; Salehi, Z ; Mashayekhan, S ; Kowsari Esfahan, R ; Dolatshahi Pirouz, A ; Bonakdar, S ; Shokrgozar, M. A ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Endothelial cell migration is a crucial step in the process of new blood vessel formation - a necessary process to maintain cell viability inside thick tissue constructs. Here, we report a new method for maintaining cell viability and inducing cell migration using a perfused microfluidic platform based on collagen gel and a gradient hydrogel sheet. Due to the helpful role of the extracellular matrix components in cell viability, we developed a hydrogel sheet from decellularized tissue (DT) of the bovine heart and chitosan (CS). The results showed that hydrogel sheets with an optimum weight ratio of CS/DT = 2 possess a porosity of around 75%, a mechanical strength of 23 kPa, and display cell... 

    Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys

    , Article Journal of Magnesium and Alloys ; Volume 10, Issue 7 , 2022 , Pages 1737-1785 ; 22139567 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Gerashi, E ; Asadollahi, M ; Langdon, T. G ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2022
    Abstract
    Biodegradable magnesium (Mg) alloys exhibit great potential for use as temporary structures in tissue engineering applications. Such degradable implants require no secondary surgery for their removal. In addition, their comparable mechanical properties with the human bone, together with excellent biocompatibility, make them a suitable candidate for fracture treatments. Nevertheless, some challenges remain. Fast degradation of the Mg-based alloys in physiological environments leads to a loss of the mechanical support that is needed for complete tissue healing and also to the accumulation of hydrogen gas bubbles at the interface of the implant and tissue. Among different methods used to... 

    Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 182 , 2019 ; 09277765 (ISSN) Hasany, M ; Taebnia, N ; Yaghmaei, S ; Shahbazi, M. A ; Mehrali, M ; Dolatshahi Pirouz, A ; Arpanaei, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric...