Loading...
Search for: titania-nano-particles
0.01 seconds

    A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium

    , Article Electrochemistry Communications ; Volume 61 , 2015 , Pages 110-113 ; 13882481 (ISSN) Siavash Moakhar, R ; Goh, G. K. L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    A novel and simple photoelectrochemical (PEC) sensor to detect Cr(VI) based on screen-printed TiO2 modified with gold nanoparticles is presented. The proposed PEC sensor showed a very low detection limit (S/N = 3) of 0.004 μM, over a wide linear concentration range from 0.01 μM to 100 μM with a high sensitivity of 11.88 μA.μM-1 Cr(VI). Results also indicated good anti-interference and superb recovery in natural media application for Cr(VI) sensing  

    Stability of titania nano-particles in different alcohols

    , Article Ceramics International ; Volume 38, Issue 5 , 2012 , Pages 3893-3900 ; 02728842 (ISSN) Farrokhi Rad, M ; Ghorbani, M ; Sharif University of Technology
    2012
    Abstract
    The alcoholic suspensions of titania nano-particles were prepared using the methanol, ethanol, isopropanol and butanol as the solvents as well as triethanolamine (TEA) as an dispersant. The colloidal stability of suspensions, both in the absence as well as presence of TEA, was studied by measuring the zeta potential, sedimentation, pH and electrical conductivity of suspensions, dispersant adsorption and particles size distribution. Results showed that in the absence of TEA, the stability of the suspensions increases with the molecular size of alcohol (from methanol to butanol), while the zeta potential decreases. It was also observed that with the addition of TEA up to the optimum dosage (4... 

    Investigation the effect of super hydrophobic titania nanoparticles on the mass transfer performance of single drop liquid-liquid extraction process

    , Article Separation and Purification Technology ; Volume 176 , 2017 , Pages 107-119 ; 13835866 (ISSN) Hatami, A ; Bastani, D ; Najafi, F ; Sharif University of Technology
    Abstract
    Hydrophobic titania nanoparticles were synthesized by a novel in situ sol-gel method and applied in a single drop liquid-liquid extraction column to enhance the overall dispersed-phase mass transfer coefficient (Kod). The chemical system of toluene, acetic acid and water was used, and the direction of solute (acetic acid) mass transfer was from dispersed phase, including: toluene and acetic acid to the continuous phase of water. For such system, much of the mass transfer resistance exists in the dispersed phase, which is nonpolar organic liquid. Hence, modified titania nanoparticles (MTNP's), prepared by sol-gel route, in five different concentrations of 0.001–0.005 wt.% were added in the...