Loading...
Search for: ti–6al–4v
0.005 seconds

    Producing Ti-6Al-4V/TiC composite with superior properties by adding boron and thermo-mechanical processing

    , Article Materials Science and Engineering A ; Volume 564 , 2013 , Pages 473-477 ; 09215093 (ISSN) Rastegari, H ; Abbasi, S. M ; Sharif University of Technology
    2013
    Abstract
    In order to study the effect of boron addition on the microstructure and tensile properties of titanium matrix composites, two Ti-6Al-4V/10. Vol% TiC ingots with and without boron were fabricated by VIM furnace and hot rolling. The microstructures of composites were examined using optical microscopy (OM). The X-ray diffraction (XRD) was used to identify the phases present in the composites. Addition of boron resulted in the formation of needle shaped TiB in the matrix that was followed by the refinement of grain size. Compared with Ti-6Al-4V/TiC composite, the composite containing boron content exhibited a significantly higher ductility and lower strength. It was caused by the effects of... 

    The effect of multiple surface treatments on biological properties of Ti-6Al-4V alloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 10 , 2014 , p. 4588-4593 Parsikia, F ; Amini, P ; Asgari, S ; Sharif University of Technology
    Abstract
    In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface... 

    Additive manufacturing of Ti6Al4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties

    , Article Journal of Alloys and Compounds ; Volume 804 , 2019 , Pages 163-191 ; 09258388 (ISSN) Azarniya, A ; Colera, X. G ; Mirzaali, M. J ; Sovizi, S ; Bartolomeu, F ; St Weglowski, M. K ; Wits, W. W ; Yap, C. Y ; Ahn, J ; Miranda, G ; Silva, F. S ; Madaah Hosseini, H. R ; Ramakrishna, S ; Zadpoor, A. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    As one of the most important additive manufacturing (AM) techniques, laser metal deposition (LMD) has been extensively studied specially during the last few years. Similar to other AM techniques, the quality of LMD parts is highly dependent on the processing parameters that need to be optimized so as to obtain geometrically accurate parts as well as favorable microstructures and, thus, mechanical properties. The present review paper therefore aims to present a critical analysis and overview of the relationship between processing parameters, microstructure, and mechanical properties of LMD components made from the Ti–6Al–4V alloy. Moreover, we discuss the applications of LMD parts in the... 

    Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique

    , Article Ceramics International ; Volume 39, Issue 2 , 2013 , Pages 1793-1798 ; 02728842 (ISSN) Faghihi Sani, M. A ; Arbabi, A ; Mehdinezhad Roshan, A ; Sharif University of Technology
    2013
    Abstract
    Surface modification of titanium implants is recently considered by several researchers. In this study, PEO was performed over commercially Ti-6Al-4V alloy pellets in an aqueous electrolyte containing calcium acetate (C.A.) and calcium glycerphosphate (Ca-GP) with a Ca/P molar ratio of 6.8, and applying current density of 0.212 A/cm2, frequency of 100 Hz and duty ratio of 60% for 4 min. In the next step, hydrothermal treatments were carried out for various durations and at different temperatures inside an autoclave chamber containing a NaOH solution with pH of 11.5. XRD and SEM results confirmed formation of needle-shaped HAp after all hydrothermal conditions. Maximum intensity of HAp peaks... 

    Ultrasonic-assisted grinding of Ti6Al4V alloy

    , Article Procedia CIRP ; Volume 1, Issue 1 , 2012 , Pages 353-358 ; 22128271 (ISSN) Nik, M. G ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2012
    Abstract
    In conventional grinding of hard to cut materials such as Ti6Al4V alloys, surface burning, redeposition and adhesion of chips to the grinding wheel and workpeice occur visibly unless it is carried out at low speeds and with high volume of cutting fluid. Ultrasonic assisted grinding is an efficient machining process which improves the machinability of hard-to-cut materials by changing the kinematics of the process. In this research, the effect of imposition of ultrasonic vibration on the grinding of Ti6Al4V alloy is studied. Longitudinal vibration at ultrasonic frequency range (20 kHz) is applied on the workpiece and machining forces and surface roughness are compared between conventional... 

    Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process

    , Article Materials and Design ; Volume 32, Issue 10 , December , 2011 , Pages 5010-5014 ; 02641275 (ISSN) Rastegari, H. A ; Asgari, S ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, Ti-6Al-4V/TiC composite was fabricated by VIM furnace and graphite crucible. X-ray diffraction analysis and EDS techniques were used to identify the phases in the material. Microstructure characteristics of the Ti-6Al-4V/TiC composite were evaluated by means of optical microscopy. The tensile test was performed at room temperature after hot-rolling of the samples in the beta phase field. The results revealed that at different melting times, three kinds of precipitates are formed in the microstructure including grain boundary, eutectic and transgranular precipitates. The size of transgranular precipitates was significantly larger than that of the other two types of carbides and... 

    Application of artificial neural network to estimate the fatigue life of shot peened Ti-6Al-4V ELI alloy

    , Article Fatigue of Materials: Advances and Emergences in Understanding, Held During Materials Science and Technology 2010, MS and T'10, 17 October 2010 through 21 October 2010 ; 2010 , Pages 411-417 ; 9780470943182 (ISBN) Yavari, S. A ; Saeidi, N ; Maddah Hosseini, S. H ; Sharif University of Technology
    Abstract
    An artificial neural network to predict the fatigue life, residual stress and Almen intensity of shot peened alloy Ti6Al4V ELI was developed. To minimize the prediction error, a feed forward model was used and the neural network was trained with back-propagation learning Algorithm. The results of this investigation show that a neural network with one hidden layer and five neurons in this layer will give the best performance. With this structure the network approaches to the desired error in the least time. Furthermore, it was concluded that there is a good agreement between the experimental data, the predicted values and the well-trained neural network. Therefore, the neural network has a... 

    Highly-ordered TiO2 nanotubes decorated with Ag2O nanoparticles for improved biofunctionality of Ti6Al4V

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 1008-1017 ; 02578972 (ISSN) Sarraf, M ; Dabbagh, A ; Abdul Razak, B ; Mahmoodian, R ; Nasiri Tabrizi, B ; Madaah Hosseini, H. R ; Saber Samandari, S ; Abu Kasim, N. H ; Abdullah, H ; Sukiman, N. L ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The nanotubular arrays of titanium dioxide (TiO2 NTs) have recently received considerable interest for fabrication of dental and orthopedic implants. However, their antibacterial activity requires substantial improvement for the potential infections minimization, without compromise of their biocompatibility. In this work, TiO2 NTs were developed on Ti6Al4V substrates via anodization at a constant potential of 60 V for 60 min, followed by heat treatment at 500 °C for 90 min. Physical vapor deposition (PVD) was further employed to decorate silver oxide nanoparticles (Ag2O NPs) on the nanotubular edges. The results indicated that the highly-ordered TiO2 NTs with decorated Ag2O NPs could promote... 

    Effects of severe plastic deformation on pre-osteoblast cell behavior and proliferation on AISI 304 and Ti-6Al-4V metallic substrates

    , Article Surface and Coatings Technology ; Volume 366 , 2019 , Pages 204-213 ; 02578972 (ISSN) Tevlek, A ; Aydın, H. M ; Maleki, E ; Varol, R ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, titanium alloy (Ti-6Al-4V) and austenitic stainless steel (AISI 304) biomedical alloys were subjected to surface severe plastic deformation (SSPD) via severe shot peening (SSP) with the conditions of A28-30 Almen intensity. SSP is widely accepted as much more effective than the conventional surface modification techniques since it forms a nano-grain layer with large number of dislocations and grain boundaries. The SSP treatment in this study was led to a very thin rough layer in Ti-6Al-4V titanium alloy compared to that of AISI 304. The thicker layer of AISI 304 was created by twin-twin intersections and a martensite structure transformations. SSP treatment was resulted in a... 

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Laser textured novel patterns on Ti6Al4V alloy for dental implants surface improvement

    , Article Journal of Laser Applications ; Volume 33, Issue 4 , 2021 ; 1042346X (ISSN) Dabbagh, G. R ; Sadrnezhaad, S. K ; Shoja Razavi, R ; Nourbakhsh, A. A ; Hassanzadeh Nemati, N ; Sharif University of Technology
    Laser Institute of America  2021
    Abstract
    Creating laser texture on dental implants is a novel method for accelerating osseointegration and prolongation of lifespan. The purpose of this research was twofold: (1) Creating intersecting lines pattern with different angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) on the surface of Ti6Al4V, using pulse Nd:YAG laser with a wavelength of 1064 nm and a pulse length of 170 ns and (2) comparing optical and SEM images, EDS analyses, contact angles (CAs), and surface free energies (FEs) for different intersecting lines angles. CA and FE depended on the intersecting lines angle according to Y = Y 0 + A sin (x B + C), where Y is the CA or FE; x is the intersecting lines angle; and Y0, A, B, and C... 

    The prominent role of fully-controlled surface co-modification procedure using titanium nanotubes and silk fibroin nanofibers in the performance enhancement of Ti6Al4V implants

    , Article Surface and Coatings Technology ; Volume 412 , 2021 ; 02578972 (ISSN) Goudarzi, A ; Sadrnezhaad, K ; Johari, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Modification of orthopedic implant surfaces through advanced nanoscale coating methods has made a major breakthrough in maximizing implantation success. Adjustable drug release and biocompatibility are among the most momentous features since they can significantly prevent the implantation failure. In this study, the potential of silk fibroin (SF) nanofibers fabricated via electrospinning, along with titanium oxide nanotube arrays (TNTs) formed through anodization, were exploited to produce a cyto-biocompatible, well-controlled drug delivery system. Highly-ordered TNTs were formed in an organic electrolyte solution within 2 h at the voltage of 60 V under temperature controlling (16 °C).... 

    Production and characterization of Ti6Al4V/CaP nanocomposite powder for powder-based additive manufacturing systems

    , Article Powder Technology ; Volume 386 , 2021 , Pages 319-334 ; 00325910 (ISSN) Sayedain, S. S ; Ekrami, A ; Badrossamay, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Ti64/CaP nanocomposite powder was fabricated and characterized for use in powder-bed 3D printing. The microstructure and phase composition, morphology, particle size distribution, sphericity, flow behavior and dispersion of the as-fabricated particles on the building plate of the 3D printer were investigated. The results confirmed a uniform distribution of nanostructured calcium phosphate particles on the surface of primary Ti64 ones. Calcium phosphate appears as an octa-calcium phosphate phase. The morphology of the particles was shown as spherical, and their sphericity was better than the as-received Ti64 particles. The particle size distribution of nanocomposite powder indicated a smaller... 

    Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study

    , Article Materials Science and Engineering C ; Volume 33, Issue 4 , 2013 , Pages 2002-2010 ; 09284931 (ISSN) Abrishamchian, A ; Hooshmand, T ; Mohammadi, M ; Najafi, F ; Sharif University of Technology
    2013
    Abstract
    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%)...