Loading...
Search for: tool-holder
0.007 seconds

    Extending the inverse receptance coupling method for prediction of tool-holder joint dynamics in milling

    , Article Journal of Manufacturing Processes ; Volume 14, Issue 3 , 2012 , Pages 199-207 ; 15266125 (ISSN) Rezaei, M. M ; Movahhedy, M. R ; Moradi, H ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Recently, receptance coupling substructure analysis (RCSA) is used for stability prediction of machine tools through its dynamic response determination. A major challenge is the proper modelling of the substructures joints and determination of their parameters. In this paper, a new approach for predicting tool tip FRF is presented. First, inverse RCSA formulation is extended so that the holder FRFs can be identified directly through experimental modal tests. The great advantage of this formulation is its implementation in arbitrary point numbers along joint length. Therefore, in comparison with previous inverse RCSA approaches, a more realistic joint model can be considered. In addition, due... 

    Vibration Analysis of Tool, Tool Holder and Spindle Interface

    , M.Sc. Thesis Sharif University of Technology Rezai, Mohammad Mahdi (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Investigation stability of chatter vibration is of great importance in machining processes. Finding frequency response function (FRF) at the tool tip is an effective method to predict stable machining regions. Commonly, the tool tip FRF is obtained using experimental modal analysis but this approach is often time consuming and requires expertise. In addition, changing tool or holder requires modal test which is a disadvantage, consequently modeling methods are of interest for researchers. Moreover, optimum design of machine tool is another benefit of modeling method. Also, in machining with flexible or micro tools in which experimental tests can not be performed, modeling methods would be...